

Lower Vasse River

EPBC2021/9051 Annual Compliance Report 2022-2023

Prepared for

City of Busselton

May 2023

people
 planet
 professional

Document	Revision	Prepared	Reviewed	Admin	Submitte	d to Client
Reference	Revision	by	by	Review	Copies	Date
4513AI_Rev0	Internal Draft	NP	AW	-	-	22/05/23
4513AI _Rev1	Client Draft	NP	AW	RH	1 (PDF)	24/05/23
4513AI _Rev2	Client Final	NP	AW	RH	1 (PDF)	31/05/23

Disclaimer

This report is issued in accordance with, and is subject to, the terms of the contract between the Client and 360 Environmental Pty Ltd, including, without limitation, the agreed scope of the report. To the extent permitted by law, 360 Environmental Pty Ltd shall not be liable in contract, tort (including, without limitation, negligence) or otherwise for any use of, or reliance on, parts of this report without taking into account the report in its entirety and all previous and subsequent reports. 360 Environmental Pty Ltd considers the contents of this report to be current as at the date it was produced. This report, including each opinion, conclusion and recommendation it contains, should be considered in the context of the report as a whole. The opinions, conclusions and recommendations in this report are limited by its agreed scope. More extensive, or different, investigation, sampling and testing may have produced different results and therefore different opinions, conclusions and recommendations. Subject to the terms of the contract between the Client and 360 Environmental Pty Ltd, copying, reproducing, disclosing or disseminating parts of this report is prohibited (except to the extent required by law) unless the report is produced in its entirety including this cover page, without the prior written consent of 360 Environmental Pty Ltd.

© Copyright 2023 360 Environmental Pty Ltd ACN 109 499 041

Table of Contents

1	Introduction	1
1.1	Purpose of this Document	1
1.2	Timing	1
2	Declaration of Accuracy	2
3	Description of Activities	3
3.1	Management Plans	3
4	Compliance Summary	5
5	References	12
List	of Figures	
	re 1: EPBC Referral Project Area	
Figure	re 2: LVR Stage 1 Area and Monitoring Locations	15
List	of Tables	
Table	e 1: Summary of Compliance with EPBC 2021/9051	5

List of Appendices

Appendix A EPBC 2021/9051 Approval
Appendix B EPBC 2021/9051 Letter of Commencement
Appendix C LVR Stage 1 Closure Report

1 Introduction

The Lower Vasse River Sediment Removal Project (the Project) was referred to the Department of Agriculture, Water and the Environment (DAWE, now the Department of Climate Change, Energy, the Environment and Water [DCCEEW]) under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) in 2021. The Project involves the removal of nutrient-rich sediment from the Lower Vasse River (LVR) in Busselton by mechanical means (dredging) and management of dredged sediments in geotextile tubes within an onshore laydown area (refer Figure 1). The primary objective is to reduce the nutrient load of the LVR to minimise the proliferation of toxic algal blooms during summer.

The Project was determined to be a 'Controlled Action' due to the potential direct (dredging) and indirect (habitat disturbance) impacts on a locally significant population of *Westralunio carteri* (Carter's Freshwater Mussel) and potential water quality impacts to the downstream Ramsar Vasse Wonnerup Wetland System.

The Project, and associated technical management plans, was formally assessed, and received approval in February 2022 (EPBC2021/9051; Attachment 1). The 'action', being the activities associated with sediment removal from the Lower Vasse River (LVR) in Busselton, Western Australia, was commenced on 4 April 2022 (refer Attachment 2) with the construction of the onshore laydown area.

1.1 Purpose of this Document

This annual compliance report (ACR) has been prepared in accordance with the Department of the Environment (DoE, now DCCEEW) Annual Compliance Report Guidelines (DoE 2014) to satisfy Condition 10 of EPBC2021/9051 (Attachment 1).

1.2 Timing

This ACR presents a summary of the compliance items related to the action for the period 4 April 2022 to 4 April 2023. In accordance with the signed letter of commencement, the ACR is due on 3 June 2023.

2 Declaration of Accuracy

In making this declaration, I am aware that sections 490 and 491 of the *Environment Protection* and *Biodiversity Conservation Act 1999* (Cth) (EPBC Act) make it an offence in certain circumstances to knowingly provide false or misleading information or documents. The offence is punishable on conviction by imprisonment or a fine, or both. I declare that all the information and documentation supporting this compliance report is true and correct in every particular. I am authorised to bind the approval holder to this declaration and that I have no knowledge of that authorisation being revoked at the time of making this declaration.

Signed	_
Full name (please print)Anthony Graham Nottle	
Position (please print) Chief Executive officer	
Organisation (please print including ABN/ACN if applicable)	City of Busselton
Date 01 / 06 / 2023	

3 Description of Activities

Stage 1 of the Project consisted of targeted dredging of approximately 4,240 m³ of sediment (insitu volume) along a 200 m stretch of the river between the Causeway Bridge and pedestrian bridge adjacent Rotary Park (Figure 2). The dredging was completed using a GeoProTM Microdredge with a horizontal auger between 28 April and 8 June 2022 with the dredge operational for a total of 28 days. Dredging temporarily ceased on 11 May 2022 due to discovery of a pipe in the river, which was removed by divers on 12 May, after which dredging recommenced.

The dredged sediments were pumped into GeoProTM desludging tubes located within an onshore lined and bunded laydown area. The laydown area was connected to a tailor-made return water channel fitted with a Phoslock dosing system to bind and hence reduce the phosphorous concentration in the return water prior to discharge, and a series of rock baffles and weirs, aimed at aiding oxidisation/nitrification and hence reducing ammoniacal nitrogen concentrations prior to discharge to the LVR.

Silt curtains were in place at the upstream and downstream extents of the active works (dredging and return water discharge) area for the duration of the dredging. Following completion of the dredging on 8 June 2022, no residual turbid plume was reported and, after consultation with the Department of Water and Environmental Regulation (DWER), the silt curtains were removed on 9 June 2022.

On 10 June 2022, the plastic liner beneath the tubes was cut and the entrance to the return water channel blocked with sandbags to allow infiltration of remaining return water. The tubes remained in-situ for several months to facilitate further dewatering and to ensure the meteorological conditions were amicable to open the tubes and transport the sediment to the treatment facility (i.e. not raining).

It was confirmed that approximately 1,545 m³ (1,634 t) of sediment was removed from the LVR during the Stage 1 dredging campaign. The dewatered sediment was mixed with sand and lime at the treatment facility resulting in a total volume of 2,556 m³ (2,684 t) validated and characterised for disposal.

3.1 Management Plans

3.1.1 Acid Sulfate Soil and Dewatering Management Plan

The Acid Sulfate Soils and Dewatering Management Plan (ASSDMP; 360 Environmental 2023) was prepared to satisfy condition 2 of EPBC 2021/9051. The ASSDMP details the management actions and contingency measures that will be implemented for the duration of the project. Of most relevance is the water quality monitoring program undertaken for the duration of dredging and return water discharge. The water quality data was assessed during the initial stage of dredging, and it was concluded that there was no impact to the downstream Vasse Wonnerup

Wetland System. While there were elevated nutrient concentrations within the LVR during the dredging activities, the impacts were localised and dissipated quickly post-dredging.

The outcomes of the initial stage of dredging are detailed in the LVR Stage 1 Closure Report (Appendix C).

3.1.2 Dredge and Disposal Management Plan

The Dredge and Disposal Management Plan (DDMP; 360 Environmental 2022) was prepared to satisfy condition 3 of EPBC 2021/9051. The DDMP details the management actions and contingency measure that will be implemented for the duration of the project. The primary commitment of the DDMP is to provide appropriate management controls that would ensure no adverse impact to the water quality of the Vasse Wonnerup Wetland System. The outcome of this objective is measured by the monitoring of water quality in the LVR upstream downstream and adjacent to the dredging and return water discharge locations. The data is compared to baseline data and derived trigger levels as per the requirements of the ASSDMP.

3.1.3 Carter's Freshwater Mussel Management Plan

The Environmental Management Plan for Carter's Freshwater Mussel *Westralunio carteri* (Beatty et al. 2023) was prepared to satisfy condition 1 of EPBC 2021/9051.

The primary reason for the action being a "Controlled Action" under the EPBC Act was the potential impacts of the action on a locally significant population of Carter's Freshwater Mussel (*Westralunio carteri*). Unfortunately, due to a saline intrusion event in April 2021, there were no live mussels within the area subject to the initial stage of the dredging (refer Figure 2).

The management objectives of the plan included minimising mortality and restoring population abundance within the sediment removal site. Given that there were no mussels within the sediment removal site (dredge area), the management measures and controls detailed in the plan, including relocation, was not required to be implemented for this stage of dredging.

4 Compliance Summary

Table 1: Summary of Compliance with EPBC 2021/9051

Condition #	Condition	Compliance Status	Details
Part A – Condit	tions specific to the action	•	
1.	The approval holder must not undertake dredging outside the project area.	Compliant	Dredging was confined to the approved area.
2.	For the protection of Carter's Freshwater Mussels the approval holder must implement all avoidance, mitigation and management measures specified in the Carter's Freshwater Mussel Management Plan for the life of the approval.	Compliant	The plan was implemented; however no specific controls or provisions were required during the first stage of dredging due to no target species being present within the dredge area.
3.	For the protection of the ecological character of the Vasse Wonnerup Wetlands the approval holder must implement all avoidance, mitigation and management measures specified in the Dredge and Disposal Management Plan for the life of the approval .	Compliant	The Dredge and Disposal Management Plan (DDMP; 4513AA_Rev3) controls were implemented successfully during the first stage of dredging. There were no incidents, nor complaints, reported.
4.	For the protection of the ecological character of the Vasse Wonnerup Wetlands the approval holder must implement all avoidance, mitigation and management measures specified in the Acid Sulfate Soils and Dewatering Management Plan for the life of the approval.	Compliant	The Acid Sulfate Soils and Dewatering Management Plan (ASSDMP; 4602AA_Rev5) was implemented successfully during the initial stage of dredging. The water quality monitoring indicated that although nutrient concentrations in the return water were elevated, there was no resultant impact on the downstream Vasse Wonnerup Wetland System (refer Appendix C).

Condition #	Condition	Compliance Status	Details
Part B – Standa	ard administrative conditions		
5.	The approval holder must notify the Department in writing of the date of commencement of the action within 10 business days after the date of commencement of the action .	Compliant	The action commenced on 4 April 2022 and the City of Busselton formally notified DAWE (now DCCEEW) of the commencement on 11 April 2022 and commencement was acknowledged by DAWE on 26 April 2022 (Appendix B).
6.	The approval holder must maintain accurate and complete compliance records .	Compliant	Internal compliance record management system.
7.	If the Department makes a request in writing, the approval holder must provide electronic copies of compliance records to the Department within the timeframe specified in the request	Not Applicable	No such requests were received.
8.	The approval holder must: a. submit plans electronically to the Department b. unless otherwise agreed to in writing by the Minister, publish each plan on the website within 20 business days of: i. if the version of the plan to be implemented is specified in these conditions, the date of this approval decision; or ii. the date a revised plan is approved by the Minister; or iii. the date a revised action management plan is submitted to the Minister or the Department in accordance with conditions 17 and 18	Compliant	All plans were submitted electronically to the Department and posted to the City of Busselton website upon receipt of notification of approval by the Department. The revised Carter's Freshwater Management Plan and ASSDMP were submitted to the Department under Conditions 17 and 18 of EPBC 2021/9051 on 14 February 2023 and the revised plans also published on the website.
	 c. exclude or redact sensitive ecological data from plans published on the website or provided to a member of the public d. keep plans published on the website until the end date of this approval. 		The City received confirmation by email from DCCEEW on 5 April 2023 that the revised plans could be implemented in place of the previously approved plans.

Condition #	Condition	Compliance Status	Details
9.	The approval holder must ensure that any monitoring data (including sensitive ecological data), surveys, maps, and other spatial and metadata required under a plan , is prepared in accordance with the Department's Guidelines for biological survey and mapped data (2018) and submitted electronically to the Department in accordance with the requirements of the plan .	Compliant	No monitoring data is required to be submitted directly to the Department under the approved plans. The LVR Stage 1 Closure Report, which presents an overview and the data from the first stage of dredging, has been issued separately to the Department.
10.	The approval holder must prepare a compliance report for each 12 month period following the date of commencement of the action , or as otherwise agreed in writing by the Minister. The approval holder must: a. publish each compliance report on the website within 60 business days following the relevant 12 month period b. notify the Department by email that a compliance report has been published on the website and provide the weblink for the compliance report within 5 business days of the date of publication c. keep all compliance reports publicly available on the website until this approval expires d. exclude or redact sensitive ecological data from compliance reports	Compliant	This document covers the requirements of Condition 10 and will be published on the website prior to the due date stipulated on the letter of commencement (Appendix B) being 3 June 2023. Notification and a weblink will be provided to DCCEEW following the posting of this compliance report.
	published on the website e. where any sensitive ecological data has been excluded from the version published, submit the full compliance report to the Department within 5 business days of publication.		

Condition #	Condition	Compliance Status	Details
11.	The approval holder must notify the Department in writing of any: incident ; non-compliance with the conditions; or non-compliance with the commitments made in plans . The notification must be given as soon as practicable, and no later than 2 business days after becoming aware of the incident or non-compliance. The notification must specify:	Not Applicable	There were no reportable non-compliances during this reporting period.
	a. any condition which is or may be in breach		
	b. a short description of the incident and/or non-compliance		
	c. the location (including co-ordinates), date, and time of the incident and/or non-compliance. In the event the exact information cannot be provided, provide the best information available.		
12.	The approval holder must provide to the Department the details of any incident or non-compliance with the conditions or commitments made in plans as soon as practicable and no later than 10 business days after becoming aware of the incident or non-compliance, specifying:	Not Applicable	There were no reportable non-compliances during this reporting period.
	a. any corrective action or investigation which the approval holder has already taken or intends to take in the immediate future		
	b. the potential impacts of the incident or non-compliance		
	c. the method and timing of any remedial action that will be undertaken by the approval holder.		
13.	The approval holder must ensure that independent audits of compliance with the conditions are conducted as requested in writing by the Minister .	Not Applicable	No independent audit was requested by th Minister.

Condition #	Condition	Compliance Status	Details
14.	For each independent audit , the approval holder must: a. provide the name and qualifications of the independent auditor and the draft audit criteria to the Department	Not Applicable	No independent audit was requested by the Minister.
	 b. only commence the independent audit once the audit criteria have been approved in writing by the Department c. submit an audit report to the Department within the timeframe specified in 		
	the approved audit criteria.		
15.	The approval holder must publish the audit report on the website within 10 business days of receiving the Department's approval of the audit report and keep the audit report published on the website until the end date of this approval.	Not Applicable	No independent audit was requested by the Minister.
16.	The approval holder may, at any time, apply to the Minister for a variation to an action management plan approved by the Minister , or as subsequently revised in accordance with these conditions, by submitting an application in accordance with the requirements of section 143A of the EPBC Act . If the Minister approves a revised action management plan (RAMP) then, from the date specified, the approval holder must implement the RAMP in place of the previous action management plan.	Not Applicable	The RAMPs provided to the Department during this reporting period were done so under Conditions 17 and 18.
17.	The approval holder may choose to revise an action management plan approved by the Minister , or as subsequently revised in accordance with these conditions, without submitting it for approval under section 143A of the EPBC Act , if the taking of the action in accordance with the RAMP would not be likely to have a new or increased impact .	Compliant	The Carter's Freshwater Mussel Management Plan and Acid Sulfate Soils and Dewatering Management Plan were both revised during the reporting period under the provision of Condition 17.

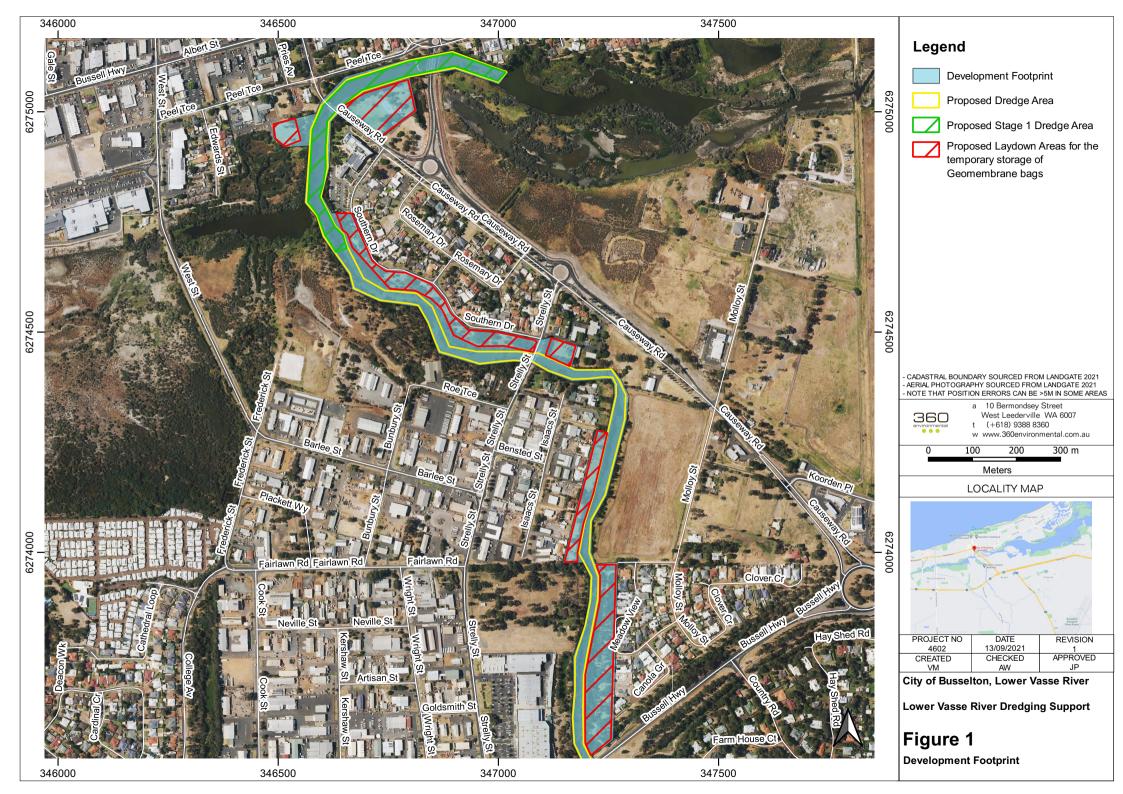
Condition #	Condition	Compliance Status	Details
18.	If the approval holder makes the choice under condition 17 to revise an action management plan without submitting it for approval, the approval holder must: a. notify the Department in writing that the approved action management plan has been revised and provide the Department with: i. an electronic copy of the RAMP ii. an electronic copy of the RAMP marked up with track changes to show the differences between the approved action management plan and the RAMP iii. an explanation of the differences between the approved action management plan and the RAMP iv. the reasons the approval holder considers that taking the action in accordance with the RAMP would not be likely to have a new or increased impact v. written notice of the date on which the approval holder will implement the RAMP (RAMP implementation date), being at least 20 business days after the date of providing notice of the revision of the action management plan, or a date agreed to in writing with the Department. b. subject to condition 20, implement the RAMP from the RAMP implementation date.	Compliant	The Department was notified of the intent to implement a RAMP on 14 February 2023. The correspondence included an email notification with an electronic copy of each plan, with tracked changes, accompanied by a letter detailing the changes with supporting information on how the changes were not likely to pose a new or increased impact. The RAMPs were not implemented during this reporting period as there were no activities being undertaken.
19.	The approval holder may revoke their choice to implement a RAMP under condition 17 at any time by giving written notice to the Department . If the approval holder revokes the choice under condition 21, the approval holder must implement the action management plan in force immediately prior to the revision undertaken under condition 21.	Not Applicable	The RAMPs will be implemented during the next stage of works.

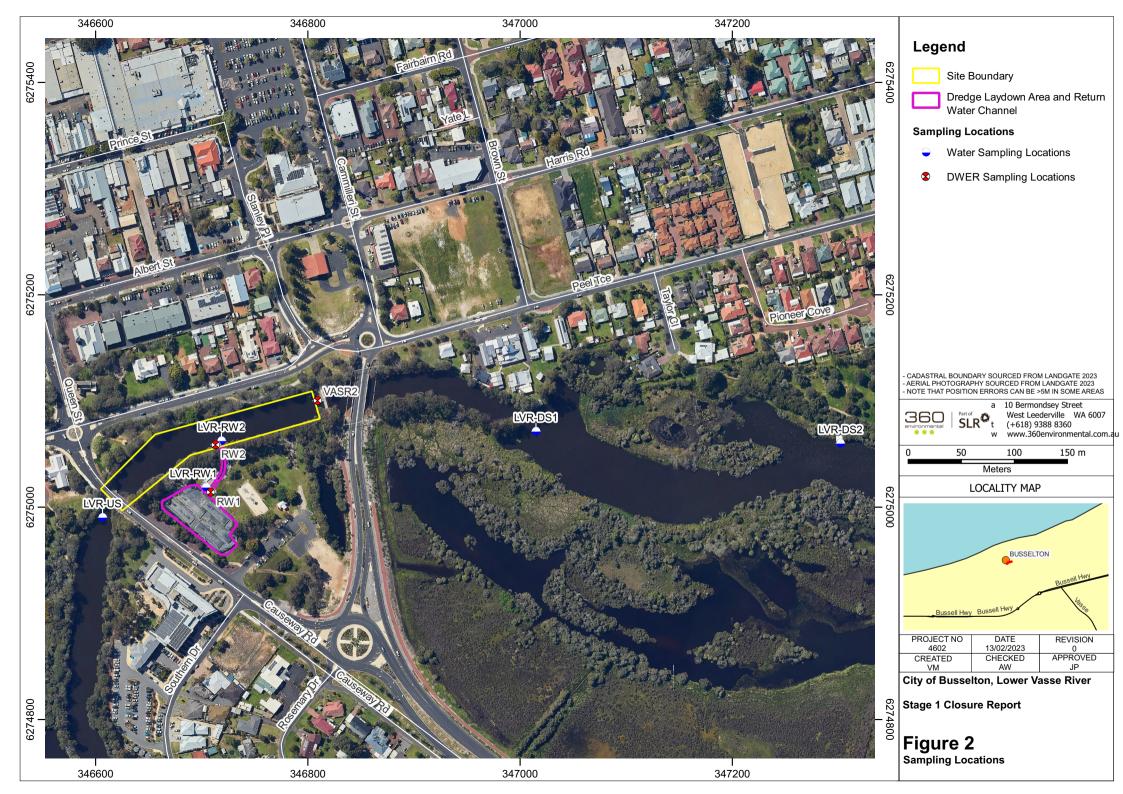
Condition #	Condition	Compliance Status	Details
20.	If the Minister gives a notice to the approval holder that the Minister is satisfied that the taking of the action in accordance with the RAMP would be likely to have a new or increased impact , then: a. condition 17 does not apply, or ceases to apply, in relation to the RAMP b. the approval holder must implement the action management plan specified by the Minister in the notice.	Not Applicable	The Department accepted the RAMPs under Condition 17.
21.	At the time of giving the notice under condition 20, the Minister may also notify that for a specified period of time, condition 17 does not apply for one or more specified action management plans.	Not Applicable	The Department accepted the RAMPs under Condition 17.
22.	Within 30 days after the completion of the action , the approval holder must notify the Department in writing and provide completion data .	Not Applicable	Action is in progress.

5 References

360 Environmental 2022, Dredge and Disposal Management Plan (4513AA_Rev3), prepared for the City of Busselton, January 2022.

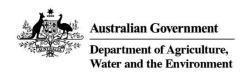
360 Environmental 2023, Acid Sulfate Soils and Dewatering Management Plan (4602AF_Rev5), prepared for the City of Busselton, February 2023.


Beatty S, Cottingham A, Lymbery A, and Paice R, 2023, Environmental Management Plan for Carter's Freshwater Mussel Westralunio carteri, prepared for the City of Busselton, January 2023.


Commonwealth of Australia: Department of Environment (DoE) 2014, Annual Compliance Report Guidelines.

Commonwealth of Australia: Department of the Environment and Energy (DoEE) 2018, Guidelines for biological survey and mapped data.

Figures



Appendices

Appendix A EPBC 2021/9051 Approval

APPROVAL

Lower Vasse River Sediment Removal, Busselton, Western Australia (EPBC 2021/9051)

This decision is made under sections 130(1) and 133(1) of the *Environment Protection and Biodiversity Conservation Act 1999* (Cth) (the EPBC Act). Note that section 134(1A) of the EPBC Act applies to this approval, which provides in general terms that if the approval holder authorises another person to undertake any part of the action, the approval holder must take all reasonable steps to ensure that the other person is informed of any conditions attached to this approval, and that the other person complies with any such condition.

Details

Person to whom the approval is granted (approval holder)	City of Busselton
ABN of approval holder	87 285 608 991
Action	To remove sediment from the Lower Vasse River between the Bussell Highway Bypass and the Butter Factory Museum, in Busselton, Western Australia [See EPBC Act referral 2021/9051]

Approval decision

My decisions on whether or not to approve the taking of the action for the purposes of each controlling provision for the action are as follows.

Controlling Provisions

Wetlands of international important	e	
Section 16	Approve	
Section 17B	Approve	
Listed Threatened Species and Comr	nunities	
Listed Threatened Species and Comr Section 18	nunities Approve	

Period for which the approval has effect

This approval has effect until 1 January 2032

Decision-maker

Name and position	Tanya Stacpoole			
	Acting Assistant Secretary			
	Environment Assessments West (WA, SA, NT) Branch			
Signature	Etyle			
Date of decision	16 February 2022			

Conditions of approval

This approval is subject to the conditions under the EPBC Act as set out in ANNEXURE A.

ANNEXURE A – CONDITIONS OF APPROVAL

Part A – Conditions specific to the action

- 1. The approval holder must not undertake **dredging** outside the **project area**.
- 2. For the protection of **Carter's Freshwater Mussels** the approval holder must implement all avoidance, mitigation and management measures specified in the **Carter's Freshwater Mussel Management Plan** for the **life of the approval.**
- 3. For the protection of the **ecological character of the Vasse Wonnerup Wetlands** the approval holder must implement all avoidance, mitigation and management measures specified in the **Dredge and Disposal Management Plan** for the **life of the approval.**
- 4. For the protection of the **ecological character of the Vasse Wonnerup Wetlands** the approval holder must implement all avoidance, mitigation and management measures specified in the **Acid Sulfate Soils and Dewatering Management Plan** for the **life of the approval.**

Part B – Standard administrative conditions

Notification of date of commencement of the action

5. The approval holder must notify the **Department** in writing of the date of **commencement of the action** within 10 **business days** after the date of **commencement of the action**.

Compliance records

- 6. The approval holder must maintain accurate and complete **compliance records**.
- 7. If the **Department** makes a request in writing, the approval holder must provide electronic copies of **compliance records** to the **Department** within the timeframe specified in the request.

Note: Compliance records may be subject to audit by the **Department** or an independent auditor in accordance with section 458 of the **EPBC Act**, and or used to verify compliance with the conditions. Summaries of the result of an audit may be published on the **Department**'s website or through the general media.

Submission and publication of plans

- 8. The approval holder must:
 - a. submit plans electronically to the Department
 - b. unless otherwise agreed to in writing by the Minister, publish each **plan** on the **website** within 20 **business days** of:
 - i. if the version of the **plan** to be implemented is specified in these conditions, the date of this approval decision; or
 - ii. the date a revised **plan** is approved by the **Minister**; or
 - iii. the date a revised action management plan is submitted to the **Minister** or the **Department** in accordance with conditions 17 and 18
 - c. exclude or redact **sensitive ecological data** from **plans** published on the **website** or provided to a member of the public
 - d. keep **plans** published on the **website** until the end date of this approval.
- 9. The approval holder must ensure that any **monitoring data** (including **sensitive ecological data**), surveys, maps, and other spatial and metadata required under a **plan**, is prepared in accordance

with the **Department's** *Guidelines for biological survey and mapped data* (2018) and submitted electronically to the **Department** in accordance with the requirements of the **plan**.

Annual compliance reporting

- 10. The approval holder must prepare a **compliance report** for each 12 month period following the date of **commencement of the action**, or as otherwise agreed in writing by the **Minister**. The approval holder must:
 - a. publish each **compliance report** on the **website** within 60 **business days** following the relevant 12 month period
 - b. notify the **Department** by email that a **compliance report** has been published on the **website** and provide the weblink for the **compliance report** within 5 **business days** of the date of publication
 - c. keep all compliance reports publicly available on the website until this approval expires
 - exclude or redact sensitive ecological data from compliance reports published on the website
 - e. where any **sensitive ecological data** has been excluded from the version published, submit the full **compliance report** to the **Department** within 5 **business days** of publication.

Note: Compliance reports may be published on the Department's website.

Reporting non-compliance

- 11. The approval holder must notify the **Department** in writing of any: **incident**; non-compliance with the conditions; or non-compliance with the commitments made in **plans**. The notification must be given as soon as practicable, and no later than 2 **business days** after becoming aware of the **incident** or non-compliance. The notification must specify:
 - a. any condition which is or may be in breach
 - b. a short description of the **incident** and/or non-compliance
 - c. the location (including co-ordinates), date, and time of the **incident** and/or non-compliance. In the event the exact information cannot be provided, provide the best information available.
- 12. The approval holder must provide to the **Department** the details of any **incident** or non-compliance with the conditions or commitments made in **plans** as soon as practicable and no later than 10 **business days** after becoming aware of the **incident** or non-compliance, specifying:
 - a. any corrective action or investigation which the approval holder has already taken or intends to take in the immediate future
 - b. the potential impacts of the **incident** or non-compliance
 - c. the method and timing of any remedial action that will be undertaken by the approval holder.

Independent audit

- 13. The approval holder must ensure that **independent audits** of compliance with the conditions are conducted as requested in writing by the **Minister**.
- 14. For each **independent audit**, the approval holder must:
 - a. provide the name and qualifications of the independent auditor and the draft audit criteria to the **Department**
 - only commence the **independent audit** once the audit criteria have been approved in writing by the **Department**

- c. submit an audit report to the **Department** within the timeframe specified in the approved audit criteria.
- 15. The approval holder must publish the audit report on the **website** within 10 **business days** of receiving the **Department's** approval of the audit report and keep the audit report published on the **website** until the end date of this approval.

Revision of action management plans

- 16. The approval holder may, at any time, apply to the Minister for a variation to an action management plan approved by the Minister, or as subsequently revised in accordance with these conditions, by submitting an application in accordance with the requirements of section 143A of the EPBC Act. If the Minister approves a revised action management plan (RAMP) then, from the date specified, the approval holder must implement the RAMP in place of the previous action management plan.
- 17. The approval holder may choose to revise an action management plan approved by the **Minister**, or as subsequently revised in accordance with these conditions, without submitting it for approval under section 143A of the **EPBC Act**, if the taking of the action in accordance with the RAMP would not be likely to have a **new or increased impact**.
- 18. If the approval holder makes the choice under condition 17 to revise an action management plan without submitting it for approval, the approval holder must:
 - a. notify the **Department** in writing that the approved action management plan has been revised and provide the **Department** with:
 - i. an electronic copy of the RAMP
 - ii. an electronic copy of the RAMP marked up with track changes to show the differences between the approved action management plan and the RAMP
 - iii. an explanation of the differences between the approved action management plan and the RAMP
 - iv. the reasons the approval holder considers that taking the action in accordance with the RAMP would not be likely to have a **new or increased impact**
 - v. written notice of the date on which the approval holder will implement the RAMP (RAMP implementation date), being at least 20 **business days** after the date of providing notice of the revision of the action management plan, or a date agreed to in writing with the **Department**.
 - subject to condition 20, implement the RAMP from the RAMP implementation date.
- 19. The approval holder may revoke their choice to implement a RAMP under condition 17 at any time by giving written notice to the **Department**. If the approval holder revokes the choice under condition 21, the approval holder must implement the action management plan in force immediately prior to the revision undertaken under condition 21.
- 20. If the **Minister** gives a notice to the approval holder that the **Minister** is satisfied that the taking of the action in accordance with the RAMP would be likely to have a **new or increased impact**, then:
 - a. condition 17 does not apply, or ceases to apply, in relation to the RAMP
 - b. the approval holder must implement the action management plan specified by the **Minister** in the notice.
- 21. At the time of giving the notice under condition 20, the **Minister** may also notify that for a specified period of time, condition 17 does not apply for one or more specified action management plans.

Note: conditions 17, 18, 19, and 20 are not intended to limit the operation of section 143A of the **EPBC Act** which allows the approval holder to submit a revised action management plan, at any time, to the **Minister** for approval.

Completion of the action

22. Within 30 days after the **completion of the action**, the approval holder must notify the **Department** in writing and provide **completion data**.

Part C - Definitions

In these conditions, except where contrary intention is expressed, the following definitions are used:

Acid Sulfate Soils and Dewatering Management Plan means the *Lower Vasse River, Busselton Acid Sulfate Soil and Dewatering Management Plan,* dated February 2022, prepared for the City of Busselton, prepared by 360 Environmental, submitted to the **Department** on 10 February 2022 or a revised version of this plan approved by the **Minister**, in writing, or revised in accordance with conditions 17 to 21 of this approval.

Business day means a day that is not a Saturday, a Sunday or a public holiday in the state or territory of the action.

Carter's Freshwater Mussel means the EPBC Act listed threatened species Westralunio carteri.

Carter's Freshwater Mussel Management Plan means Sediment removal in the lower Vasse River: Environmental Management Plan for Carter's Freshwater Mussel Westralunio carteri, dated August 2021, prepared for City of Busselton, prepared by the Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Ottelia Ecology, submitted with the referral documentation or a revised version of this plan approved by the Minister, in writing, or revised in accordance with conditions 17 to 21 of this approval.

Clearing means the cutting down, felling, thinning, logging, removing, killing, destroying, poisoning, ringbarking, uprooting or burning of vegetation (but not including weeds – see the *Australian weeds strategy 2017 to 2027* for further guidance).

Commencement of the action means the first instance of any specified activity associated with the action including **dredging**, **clearing** and **construction**. **Commencement of the action** does not include minor physical disturbance necessary to:

- i. undertake pre-clearance surveys or monitoring programs
- ii. install signage and /or temporary fencing to prevent unapproved use of the project area
- iii. protect environmental and property assets from fire, weeds and pests, including installation of temporary fencing, and use of existing surface access tracks
- iv. install temporary site facilities for persons undertaking pre-commencement activities so long as these are located where they have no impact on the **protected matters**

Completion data means an environmental report and spatial data clearly detailing how the conditions of this approval have been met. The **Department**'s preferred spatial data format is **shapefile**.

Completion of the action means the date on which all specified activities associated with the action have permanently ceased

Compliance records means all documentation or other material in whatever form required to demonstrate compliance with the conditions of approval in the approval holder's possession or that are within the approval holder's power to obtain lawfully.

Compliance reports means written reports:

i. providing accurate and complete details of compliance, **incidents**, and non-compliance with the conditions and the **plans**

- ii. consistent with the Annual Compliance Report Guidelines, Commonwealth of Australia, 2014, available from: https://www.awe.gov.au/sites/default/files/documents/annual-compliance-report-guidelines-revised.pdf
- iii. include a **shapefile** of any clearance of any **protected matters**, or their habitat, undertaken within the relevant 12 month period
- iv. annexing a schedule of all **plans** prepared and in existence in relation to the conditions during the relevant 12 month period.

Construction means the erection of a building or structure that is or is to be fixed to the ground and wholly or partially fabricated on-site; the alteration, maintenance, repair or demolition of any building or structure; preliminary site preparation work which involves breaking of the ground (including pile driving); the laying of pipes and other prefabricated materials in the ground, and any associated excavation work.

Department means the Australian Government agency responsible for administering the **EPBC Act**.

Dredge and Disposal Management Plan means the *Lower Vasse River Dredge and Disposal Management Plan*, dated January 2022, prepared for the City of Busselton, prepared by 360 Environmental, submitted to the **Department** on 20 January 2022 or a revised version of this plan approved by the **Minister**, in writing, or revised in accordance with conditions 17 to 21 of this approval.

Dredging means activities related to or involving the removal of sediment from the channel of the Lower Vasse River.

Ecological character of the Vasse-Wonnerup Wetlands means the Ecological Character Description for the Vasse-Wonnerup Wetlands Ramsar Site South-west Western Australia, prepared on behalf of Department of Environment and Conservation and Geographe Catchment Council Inc. (GeoCatch), prepared by Wetland Research & Management, dated September 2007, available from the Australian Wetlands Database for Ramsar wetlands [available from: https://www.dpaw.wa.gov.au/images/documents/conservation-management/wetlands/ramsar/ECD_Vasse_Wonnerup.pdf]

EPBC Act means the *Environment Protection and Biodiversity Conservation Act 1999* (Cth).

Incident(s) means any event which has the potential to, or does, impact on one or more **protected matter(s)**, other than as authorised by this approval.

Independent audit means an audit conducted by an independent and suitably qualified person as detailed in the Environment Protection and Biodiversity Conservation Act 1999 Independent Audit and Audit Report Guidelines, Commonwealth of Australia, 2019, available from https://www.awe.gov.au/sites/default/files/documents/independent-audit-report-guidelines-2019.pdf

Life of the approval means the period for which this approval has effect.

Monitoring data means the data required to be recorded under the conditions of this approval.

Minister means the Australian Government Minister administering the **EPBC Act** including any delegate thereof.

New or increased impact means a new or increased environmental impact or risk relating to any **protected matter**, when compared to the likely impact of implementing the action management plan that has been approved by the **Minister** under conditions 2,3 and 4, including any subsequent revisions approved by the **Minister**, as outlined in the *Guidance on 'New or Increased Impact'* relating to changes to approved management plans under EPBC Act environmental approvals, Commonwealth of Australia, 2017, available from:

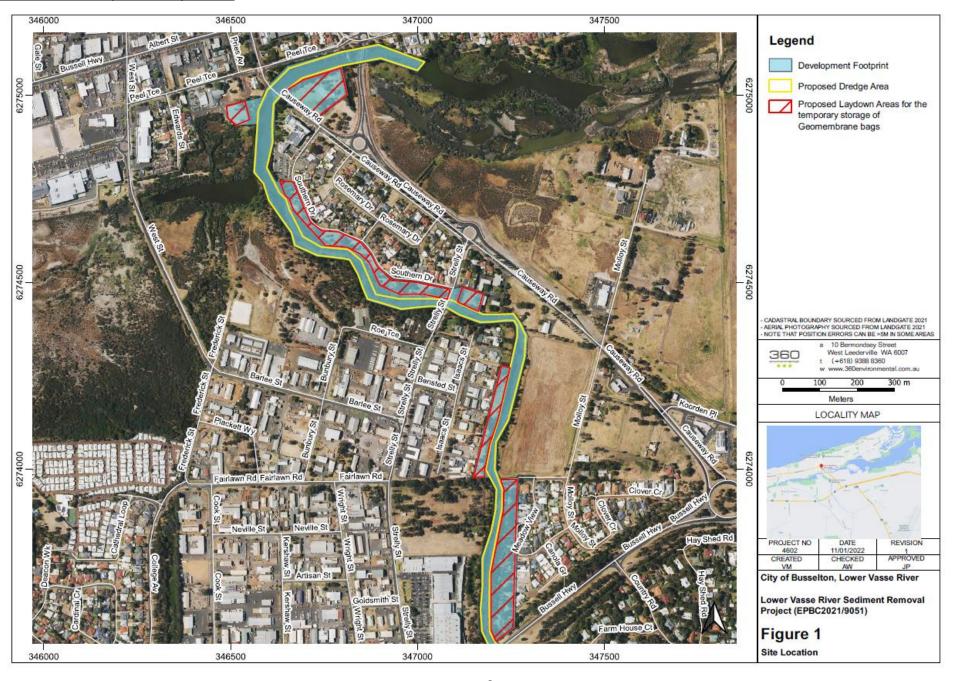
https://www.awe.gov.au/sites/default/files/documents/new-increased-impact-guidance.pdf

Plan(s) means any of the documents required to be prepared, approved by the **Minister**, implemented by the approval holder and published on the **website** in accordance with these conditions (includes action management plans and/or strategies).

Protected matter(s) means a matter protected under a controlling provision in Part 3 of the **EPBC Act** for which this approval has effect.

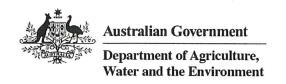
Project area means the area represented on the map in <u>Attachment A</u> by the zone enclosed by the yellow line and labelled as "*Proposed Dredge Area*"

Sensitive ecological data means data as defined in the Australian Government Department of the Environment (2016) *Sensitive Ecological Data – Access and Management Policy V1.0, Commonwealth of Australia, 2016* available from:


https://www.awe.gov.au/sites/default/files/documents/sensitive-ecological-data-access-mgt-policy.pdf

Shapefile means location and attribute information of the action provided in an Esri shapefile format. Shapefiles must contain '.shp', '.shx', '.dbf' files and a '.prj' file that specifies the projection/geographic coordinate system used. Shapefiles must also include an '.xml' metadata file that describes the shapefile for discovery and identification purposes.

Suitably qualified person means a person who has professional qualifications, training, skills and/or experience related to the nominated subject matter and can give authoritative independent assessment, advice and analysis on performance relative to the subject matter using the relevant protocols, standards, methods and/or literature.


Website means a set of related web pages located under a single domain name attributed to the approval holder and available to the public.

Attachment A – Map of the Project Area

Appendix B EPBC 2021/9051 Letter of Commencement

Ref: EPBC 2021/9051

Email: epbcmonitoring@awe.gov.au

Mathilde Breton
Senior Sustainability/Environmental Officer
City of Busselton
2 Southern Drive
BUSSELTON WA 6280

Dear Mathilde Breton,

Commencement of the Action – Lower Vasse River Sediment Removal, Busselton, Western Australia (EPBC 2021/9051).

I refer to your email of 11 April 2022 on behalf City of Busselton notifying the Department of Agriculture, Water and the Environment (the department) of commencement of the action for the Lower Vasse River Sediment Removal, Busselton WA in accordance with condition 5 of the *Environment Protection and Biodiversity Conservation Act 1999* (the Act) EPBC 2021/9051 approval.

I note that the action commenced on 4 April 2022.

Condition 10 - Compliance Reporting

Condition 10 states that the approval holder must prepare an Annual Compliance Report for each 12 month period following the date of the commencement of the action. The approval holder must continue to publish each report and notify the department of publication until the expiry of this approval on 1 January 2032. The reports must be published within 60 business days of every 12 month anniversary of commencement. Documentary evidence providing the date of publication must be provided to the department within 5 business days of the date of publication.

Please notify the department within 5 days of publication of the reports by email, including a link to where the report is publicly available to the epbcmonitoring@awe.gov.au. Please note the first Annual Compliance Report is 3 June 2023.

When preparing the report please refer to the department's Annual Compliance Report Guidelines available on the department's website at http://www.environment.gov.au/epbc/publications/annual-compliance-report-guidelines

Please note that the conditions of approval require the approval holder to maintain accurate records of all activities associated with, or relevant to, the approval conditions so that they can be made available to the department on request. These documents may be subject to audit and be used to verify compliance. Summaries of audits may be published by the department.

More information about the department's Monitoring and Audit program is available on the department's website at http://www.environment.gov.au/epbc/compliance-and-enforcement/auditing.

Section 142 of the Act requires an approval holder to comply with conditions attached to an approval. Penalties may apply to approval holders who contravene conditions.

If you would like to discuss this matter further, please contact Olivia Moore at epbcmonitoring@awe.gov.au

Yours sincerely,

Thomas Long

Assistant Director

Environmental Audit Section

26 April 2022

Appendix C LVR Stage 1 Closure Report

Lower Vasse River

Stage 1 Sediment Removal Closure Report

Prepared for

City of Busselton

May 2023

people
 planet
 professional

Document	Revision	Prepared	Reviewed	Admin	Submitted to Client	
Reference	Revision	by	by	Review	Copies	Date
4602AD_Rev0	Internal Draft	AW	JP	-	-	15/11/2022
4602AD_Rev1	Client Interim Draft	AW	JP	-	1 x electronic	17/11/2022
4602AD_Rev2	Client Final	AW	JP	RH	1 x electronic	18/05/2023

Disclaimer

This report is issued in accordance with, and is subject to, the terms of the contract between the Client and 360 Environmental Pty Ltd, including, without limitation, the agreed scope of the report. To the extent permitted by law, 360 Environmental Pty Ltd shall not be liable in contract, tort (including, without limitation, negligence) or otherwise for any use of, or reliance on, parts of this report without taking into account the report in its entirety and all previous and subsequent reports. 360 Environmental Pty Ltd considers the contents of this report to be current as at the date it was produced. This report, including each opinion, conclusion and recommendation it contains, should be considered in the context of the report as a whole. The opinions, conclusions and recommendations in this report are limited by its agreed scope. More extensive, or different, investigation, sampling and testing may have produced different results and therefore different opinions, conclusions and recommendations. Subject to the terms of the contract between the Client and 360 Environmental Pty Ltd, copying, reproducing, disclosing or disseminating parts of this report is prohibited (except to the extent required by law) unless the report is produced in its entirety including this cover page, without the prior written consent of 360 Environmental Pty Ltd.

© Copyright 2023 360 Environmental Pty Ltd ACN 109 499 041

Executive Summary

The City of Busselton manages the Lower Vasse River (LVR) and due to high nutrient concentrations and resultant algal blooms, a sediment removal program (the Project) was initiated to remove a layer of nutrient-rich sediment to improve water quality and reduce occurrence of blooms. As part of the implementation of the Lower Vasse River Waterway Management Plan (DWER/DPIRD 2019), sediment is being removed in stages along a 2.5 km section of the LVR from the Butter Factory Museum to the Busselton Bypass (refer Figure 1).

The Project was assessed under the *Environment Biodiversity Conservation Act 1999* (EPBC Act) due to the potential impacts to the conservation significant Carter's Freshwater Mussel (*Westralunio carteri*) due to riverbed (habitat) disturbance and potential deleterious impacts to the LVR water quality with the potential to impact the downstream RAMSAR-listed Vasse Wonnerup Wetland System.

Stage 1 consisted of targeted dredging of approximately 4,240 m³ of sediment (in-situ volume) along a 200 m stretch of the river between the Causeway Bridge and pedestrian bridge adjacent Rotary Park (refer Figure 1). The dredging was completed using a GeoProTM Microdredge with a horizontal auger between 28th April and 8th June 2022 with the dredge operational for a total of 28 days. The dredged sediments were pumped into GeoProTM desludging tubes located within an onshore lined and bunded laydown area connected to a return water channel fitted with a Phoslock dosing system.

Water quality monitoring was undertaken for the duration of the dredging and return water discharge to the LVR at five sampling locations (refer Figure 2). The results of the monitoring indicated that while the return water had elevated concentrations of nutrients, the nutrient input did not result in a toxic algal bloom and the elevated nutrient concentrations did not extend far downstream and dissipated quickly following completion of return water discharge.

The sediments were transported to an interim facility, mixed with inert sand and treated with lime to neutralised potential acid sulfate soils post-dewatering. Post-treatment validation sampling and analysis confirmed that the material was suitably neutralised and waste characterisation data confirmed the material was then suitable for disposal at a Class I landfill facility. Following confirmation of neutralisation and waste classification, the material was transported to a Class I facility and used as day cover.

Table of Contents

1	Introduction	1
1.1	Project Context	1
1.2	Regulatory Context	1
2	Dredging Overview	2
3	Water Quality Monitoring	5
3.1	Overview	5
3.2	Physicochemical (In-situ) Data	
3.3	Geochemical (Laboratory) Results	9
3.4	DWER Monitoring Results	11
4	Post-Dredge Sediment	13
4.1	Acid Sulfate Soils: Initial Results	13
4.2	Waste Characterisation (Pre-Treatment) Results	13
4.3	Acid Sulfate Soils: Post-Treatment Results	14
4.4	Waste Characterisation (Post-Treatment) Results	14
5	Conclusions and Recommendations	16
5.1	Conclusions	16
5.2	Recommendations	17
6	Limitations	18
7	References	19
Liet	of Eiguro	
	of Figures	
•	e 1: Site Location	
Figure	e 2: Sampling Locations	

List of Tables

Table 1: Approved Surface Water and Return Water Monitoring Program	6
Table 2: Nutrient Results Summary	10

List of Plates

Plate 1: GeoTubes Laydown Area	. 2
Plate 2: Phoslock Dosing – Return Water Channel	
Plate 3: Return Water Channel	. 3
Plate 4: Dredge Area and Silt Curtains	. 4

List of Appendices

Appendix A Lab Certificates

1 Introduction

360 Environmental Pty Ltd (360 Environmental), part of SLR Consulting, was commissioned by the City of Busselton (the City) to manage the environmental scope for the Lower Vasse River (LVR) Sediment Removal Project (the Project), which included an intensive water quality monitoring program during the sediment removal/dredging.

This report provides a summary of Stage 1 of the Project (refer Figure 1), presents the results of the water quality monitoring, and acts as a Stage 1 Acid Sulfate Soils (ASS) Closure Report.

1.1 Project Context

The City manages the LVR and due to high nutrient concentrations and resultant algal blooms, which are adversely impacting biodiversity and public amenity, dredging of a section of the LVR to remove a layer of nutrient-rich sediment was undertaken. The aim was to improve water quality in the LVR and the wider receiving sites, including the internationally listed Ramsar wetland (Vasse Wonnerup Wetland System), by the removal of the nutrient-rich sediment and to reduce the desorption of nutrients into the water column causing algal blooms in the warmer months of the year.

1.2 Regulatory Context

The Project was assessed under the *Environment Biodiversity Conservation Act 1999* (EPBC Act) due to the potential impacts to the conservation significant Carter's Freshwater Mussel (*Westralunio carteri*) due to riverbed (habitat) disturbance and potential deleterious impacts to the LVR water quality with the further potential to impact the downstream RAMSAR-listed Vasse Wonnerup Wetland System.

Three management plans were prepared to support the assessment:

- Dredge Management Plan (360 Environmental 2022a)
- Acid Sulfate Soils and Dewatering Management Plan (ASSDMP; 360 Environmental 2022b)
- Environmental Management Plan for Carter's Freshwater Mussel (*Westralunio carteri*) (Beatty et. al 2021).

The most relevant to this closure report is the ASSDMP as it detailed the requirements for water quality monitoring with associated trigger criteria.

2 Dredging Overview

As part of the implementation of the Lower Vasse River Waterway Management Plan (DWER/DPIRD 2019), it was proposed to remove sediment in stages along a 2.5 km section of the LVR from the Butter Factory Museum to the Busselton Bypass (refer Figure 1).

Stage 1 consisted of targeted dredging of approximately 4,240 m³ of sediment (in-situ volume) along a 200 m stretch of the river between the Causeway Bridge and pedestrian bridge adjacent Rotary Park (Figure 2). The dredging was completed using a GeoProTM Microdredge with a horizontal auger between 28 April and 8 June 2022 with the dredge operational for a total of 28 days. Dredging temporarily ceased on 11 May 2022 due to discovery of a pipe in the river, which was removed by divers on 12 May, after which dredging re-commenced.

The dredged sediments were pumped into GeoProTM desludging tubes located within an onshore lined and bunded laydown area (Plate 1).

Plate 1: GeoTubes Laydown Area

The laydown area was connected to a tailor-made return water channel fitted with a Phoslock dosing system (Plate 2) to bind and hence reduce the phosphorous concentration in the return water prior to discharge, and a series of rock baffles and weirs (Plate 3), aimed at aiding oxidisation/nitrification and hence reducing ammoniacal nitrogen concentrations prior to discharge to the LVR.

Plate 2: Phoslock Dosing - Return Water Channel

Plate 3: Return Water Channel

Silt curtains were in place at the upstream and downstream extents of the active works (dredging and return water discharge) area for the duration of the dredging (Plate 4). Following completion of the dredging on 8 June 2022, no residual turbid plume was reported and, after consultation with DWER, the silt curtains were removed on 9 June 2022.

Plate 4: Dredge Area and Silt Curtains

On 10 June 2022, the plastic liner beneath the tubes was cut and the entrance to the return water channel blocked with sandbags to allow infiltration of remaining return water. The tubes remained in-situ for several months to facilitate further dewatering and to ensure the meteorological conditions were amicable to open the tubes and transport the sediment to the treatment facility (i.e. not raining).

It was confirmed during transport of the dewatered sediment offsite that approximately $1,545 \, \text{m}^3$ ($1,634 \, \text{t}$) of sediment was removed from the LVR during the Stage 1 dredging campaign. The dewatered sediment was mixed with sand and lime at the treatment facility resulting in a total volume of $2,556 \, \text{m}^3$ ($2,684 \, \text{t}$) validated and characterised for disposal.

3 Water Quality Monitoring

3.1 Overview

The primary objective of the monitoring program was to confirm that the return water from dewatering of dredge spoil did not adversely impact the LVR or downstream RAMSAR wetland.

The dredge monitoring program, undertaken in accordance with the DCCEEW-approved ASSDMP (360 Environmental 2022b) is outlined in Table 1. Water monitoring occurred at the following five locations (Figure 3):

- Near the return water outflow point from the GeoProTM desludging tubes (LVR-RW1)
- Return water channel LVR discharge location (LVR-RW2)
- Immediately outside of the silt curtain on the upstream side of the sediment removal area (LVR US)
- Immediately outside of the silt curtain on the downstream side of the sediment removal area (LVR-DS1)
- Suitable location further downstream of the silt curtain (LVR-DS2).

The water quality results at potential impact sites (LVR-RW2, LVR-DS1, LVR-DS2) were compared against the upstream reference location (LVR-US) and the pre-dredging baseline monitoring to ascertain any potential impact to LVR water quality.

The results from LVR-RW1 were used to inform the dosing rate and to understand the concentration of nutrients as a comparison to the baseline elutriate results as a guide for future stages.

In addition, the Department of Water and Environmental Regulation (DWER) provided results from the VASR2 sampling location at the downstream extent of the dredge area to enable further comparison and support the Project with additional data.

Table 1: Approved Surface Water and Return Water Monitoring Program

Stage	Media	Frequency	Monitoring Location	Field Measurements	Laboratory Analysis	Responsibility	Performance Criteria	Contingency Measure
		Daily for first week, then weekly thereafter	Two (2) downstream and one (1) upstream of the return water area and outside of the silt curtains.	pH, temperature, DO, EC, NTU, TA (field), Talk (field) (only if pH<7)			pH >6 pH unit	If parameters exceed
During dredging	Surface Water	Twice for first week, then weekly thereafter	Two (2) downstream and one (1) upstream of the return water area and outside of the silt curtains for first week. One (1) downstream sample thereafter.		pH, TA, TAlk (only for first 2 events or if field pH indicates decreasing trends) Nutrient suite (TN, TKN, TP, NOx, NH ₃ , FRP) Total metals (Al, As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Zn)	Dredging Contractor/ Environmental Consultant	Nutrients below lowland river criteria, or commensurate with background/baseline surface water quality Metals below FW and RW criteria, or commensurate with background/baseline	the performance criteria, one or more of the contingency measures was applied
		Daily for first week, then weekly thereafter		pH, NTU TA (field), TAlk (field) (only if pH<7)	TKN, TP, NOx, NH ₃ , FRP) Total metals (Al, As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Zn) N/A – to inform management strategies only	If return water		
	Return	Daily for first week, then weekly thereafter Daily for duration On	One location within return chute near	рН		Dredging	pH >6 pH unit	results are exhibiting
	Water (from geotextile tubes)	Twice for first week, then weekly thereafter	geo-tube water release area, one location at the LVR discharge point.		pH, TA, TAlk Nutrient suite (TN, TKN, TP, NOx, NH ₃ , FRP) Total Al/Fe and dissolved metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)	Contractor/ Environmental Consultant	N/A – to inform management strategies only	a continuous upward trend across three or more events, additional shall be implemented.

360 Environmental Pty Ltd 6

Stage	Media	Frequency	Monitoring Location	Field Measurements	Laboratory Analysis	Responsibility	Performance Criteria	Contingency Measure
Post	Surface Water	Weekly until dewatering ceases (include one event at completion of dewatering)	One (1) downstream and one (1) upstream of the return water discharge location	pH, temperature, ORP, DO, EC, NTU, TA (field), TAlk (field) (only if pH<7)	Nutrient suite (TN, TKN, TP, NOx, NH ₃ , FRP) Total Al/Fe and dissolved metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn)	Dredging Contractor / Environmental Consultant	Turbidity comparable within and outside silt curtains Nutrient within 10% baseline/background surface water quality Metals below FW and RW criteria, or commensurate with background/baseline	If parameters exceed the performance criteria, then further monitoring will be required until levels are commensurate with baseline/background levels.
dredging	Return Water (from geotextile tubes)	If acceptable during dredging – no monitoring required						If water quality during dredging exceeded performance criteria, monitoring shall continue as per the dredging regime until water flow cease.

360 Environmental Pty Ltd

In-situ monitoring was undertaken daily for the first week (28 April to 4 May 2022) and laboratory analysis was undertaken twice weekly during the period. Twice weekly sampling continued until the week ending 13 May after which it was reduced to once per week. The monitoring regime increased in early June with sampling location DS2 added back to the monitoring program in response to elevated nutrient concentrations at the other impact sites. The final sampling event was undertaken on 16 June 2022. A total of 12 sampling events were conducted at the site from 27 April 2022 to 16 June 2022.

It is noted that DWER concurrently undertook water sampling events at the Site to monitor the concentrations, variability, and types of nutrients in the return waters and the effectiveness of the mitigation strategies that were implemented to inform future Western Australian dredging projects. The complete DWER dataset and conclusions are presented in a separate report (DWER 2022) and the results from the LVR 'VASR2' monitoring location up to the end of June 2022 are included in the dataset and discussed herein.

3.2 Physicochemical (In-situ) Data

The physicochemical results are presented in Table A. The following ranges physicochemical parameters, TTA, TAlk, phosphate and ammonia were reported in the surface water:

- Temperature ranged between 11.7 °C (LVR-DS2 on 29 April 2022) and 23.3°C (LWR-RW1 on 16 June 2022). Temperature was generally colder in the upstream (LVR-US) and two downstream samples (LVR-DS1 and LVR-DS2) compared to the return water channel samples (LVR-RW1 and LVR-RW2).
- pH ranged between 7.5 and 8.9 (various samples). pH was above the ANZG (2018) range (6.5-8.0) in all the upstream samples and most of the downstream samples and LVR-RW2. None of the samples were below the DER (2015) ASS guideline (6) or LVR Baseline pH value (7.3).
- Specific conductivity ranged between 1,821 μ S/cm and 9,474 μ S/cm representative of brackish conditions which were similar between the upstream, downstream, and return water channel samples.
- Turbidity ranged between 14 NTU and 115 NTU with most of the results reported outside of the ANZG (2018) range (10-20 NTU). Only one sample from LVR-RW2 exceeded the LVR baseline value (74 NTU) on 27 April 2022. Turbidity results were generally similar between upstream, downstream, and return water channel samples.
- Dissolved oxygen ranged between 1.4 mg/L and 16.2 mg/L indicative of anoxic (<2 mg/L) to aerobic conditions. Dissolved oxygen was reported to be lower than the LVR baseline conditions in all LVR-RW1 samples and most of the LVR-RW2 samples, displaying slightly lower oxygen than the upstream and downstream samples.

- Total titratable acidity (TAA) ranged between 0 mg/L and 91 mg/L (LVR-RW1). TAA exceeded the DER (2015) ASS Guideline (40 mg/L) in four of the 13 samples collected over the monitoring period at LVR-RW1, whilst downstream sample LVR-DS2 reported two samples out of 10 above the DER (2015) ASS Guideline.
- Total alkalinity (TAlk) ranged between 180 mg/L and 684 mg/L (LVR-RW2). TAlk was generally slightly higher in the return water samples compared to the upstream and downstream samples.

In-situ nutrients were monitored during the dredging and dewatering process via a spectrophotometer, with results detailed as follows:

- Phosphate ranged between 0 mg/L and 5.55 mg/L (LVR-RW1) exceeding the ANZG (2018) criterion (0.04 mg/L) in most of the return water samples and in some of the upstream and downstream samples. The highest phosphate concentrations were reported in LVR-RW1, as expected, but significantly reduced after Phoslock dosing and subsequent discharge to the LVR (LVR-RW2). Concentrations in both LVR-RW1 and LVR-RW2 were generally above the LVR baseline level (0.2 mg/L).
- Ammonia ranged between 0 mg/L and 9.68 mg/L (LVR-RW1) exceeding the ANZG (2018) criterion (0.9 mg/L) in most of the return water samples and in some of the downgradient samples. The highest ammonia concentrations were reported in LVR-RW1, as expected, but significantly reduced after passing through the weirs and baffles of the return water channel and subsequent discharge to the LVR (LVR-RW2). Concentrations in both LVR-RW1 and LVR-RW2 were consistently above the LVR baseline concentration (0.01 mg/L), however it is noted that there was a recent algal bloom at the time of baseline monitoring event and hence nitrogenous compounds had likely been consumed by algal species.

It is noted that the field spectrophotometer did not perform as expected producing varied results on the same sample and hence will not be utilised in the next stage of dredge monitoring.

3.3 Geochemical (Laboratory) Results

The geochemical results are presented in Table B and the laboratory certificates of analyses are included as Appendix A. Laboratory analysis for nutrients, pH, acidity/alkalinity, chlorophyll, total and dissolved metals were undertaken as per the ASSDMP (360 Environmental 2022b).

3.3.1 Nutrients

The primary focus of the monitoring program was to determine impacts to the LVR likely to result from elevated nutrients; the summary of nutrient results is presented in Table 2. The baseline elutriate data (360 Environmental 2021b) provided a good indication of the return water nutrient concentration, which is important to inform management for future stages of the dredging.

Concentrations of total nitrogen, total phosphorous, reactive phosphorous and ammonia were above the ANZG (2018) criteria in all return water samples (LVR-RW1), as expected, and in most of the samples from LVR-RW2, but also in most of the upstream (LVR-US) and far downstream (LVR-DS2) samples. This suggests that while the return water exhibited elevated nutrient concentrations, the LVR background concentrations were also elevated during the dredge program and the return water had negligible impact on the LVR, or downstream Vasse Wonnerup Wetland System, which was the reason for the performance criteria defined in Table 1.

Table 2: Nutrient Results Summary

Analytes	Total Nitrogen (as N)	Ammonia (as N)	Total Phosphorous (as P)	Reactive Phosphorous (as P)
Baseline (mg/L)	1.70	0.01	0.45	0.20
LVR-RW1	6.50 – 11.00	1.64 – 7.98	0.55 – 1.59	0.34 – 1.44
LVR-RW2	1.70 – 6.20	0.01 – 2.80	0.14 - 0.67	0.01 – 0.37
LVR-US	1.70 – 4.80	<0.01 – 0.29	0.19 – 0.5	<0.01 – 0.01
LVR-DS1	2.50 – 6.40	<0.01 – 3.53	0.15 - 0.63	<0.01 – 0.14
LVR-DS2	3.50 - 8.00	0.02 – 4.23	0.16 – 1.01	0.02 – 0.15
VASR2	1.81 – 3.59	<0.01 – 1.53	0.11 – 0.32	<0.05 – 0.15

^{*} Highlight indicates that the results are generally above baseline levels

There were several events during dredging that could have further contributed to elevated nutrient concentrations. These are discussed as follows:

- A pipe was located in the dredge area and had to be removed on 12 May 2022. This
 could have disturbed deeper sediment with different chemical constituents than
 previously sampled as the pipe was buried >2 m deep in sediment. The nutrient results
 subsequent to the pipe removal were somewhat more elevated than in previous events,
 with concentrations lowering over the following weeks.
- Dewatering effluent discharge from the Busselton Performing Arts and Cultural Centre (BPACC) Project also commenced around 12 May 2022, however laboratory results indicated ammonia levels in the dewatering effluent were ~0.55 mg/L. It is understood that there were two effluent discharge points: one upstream and one within the dredge area.
- Phytoplankton within and upstream of the dredge area (indicated by elevated chlorophyll results upstream but not downstream) would have increased oxygen levels, compared to downstream (DS1 and DS2) locations with low oxygen. Further, the silt curtains were likely hindering river flow and, hence, limiting natural oxygenation. Furthermore, downstream sites were shallower and potentially more impacted by anoxic sediments. All these factors could impact ammoniacal nitrogen concentrations as the decreased oxygen would hinder the nitrification process to convert to nitrate.

 Finally, zooplankton observed at the downstream locations (LVR-DS1, LVR-DS2) from mid-May onwards could have contributed to the elevated ammoniacal nitrogen concentrations by consuming nitrogen and excreting ammonia/ammonium. This may provide some explanation as to why the far downstream site (LVR-DS2) exhibited higher concentrations than potential impact sites (LVR-RW2, LVR-DS1).

Following the completion of dredging and dewatering of the tubes, and hence no return water entering the LVR, the final Project monitoring event and routine DWER monitoring at VASR2 confirmed that the water quality was commensurate with background condition within a week of the cessation of the program (VASR2 on 13 June 2022; Table B). Following this, the nutrient levels increased again due to upstream catchment nutrient sources via rainfall as the LVR entered its winter flow conditions.

3.3.2 Phytoplankton

Chlorophyll concentrations, as an indicator of phytoplankton abundance, were typically higher in the upstream sample (LVR-US) than in the downstream samples (LVR-DS1, LVR-DS2) indicating that the abundance was not related to the dredging and return water discharge.

It is noted that an algal bloom (toxic cyanobacteria) was present in the dredge area one week prior to the commencement of dredging operations.

3.3.3 Metals

The return water sampled immediately after discharge from the tubes (LVR-RW1) was only elevated in total aluminium (AI) and iron (Fe), with dissolved AI and Fe and all other total and dissolved metals below the ANZG (2018) Recreational and/or 95% freshwater species protection limits, and LVR baseline criteria. There were several exceedances of both total and dissolved metals in the LVR sampling locations, both upstream and downstream, but given the lack of metals in the return water itself it is considered that these are natural occurrences.

3.3.4 ASS Indicators

pH was consistently above 7.5 and commensurate with baseline/background results. Further laboratory acidity (as CaCO₃) and alkalinity (as CaCO₃) were compliant with the ASS guidelines [DER (now DWER) 2015].

3.4 DWER Monitoring Results

DWER completed monitoring upstream and downstream of the Phoslock dosing system in the return water channel during the dredging campaign (RW1 and RW2, respectively); the concentrations of nutrients and species of nutrients at the two sites were similar. Nutrient concentrations in the return water varied over time, but despite the fluctuations, nutrient concentrations remained high. The average total phosphorus (TP) and total nitrogen (TN) concentrations in the return water flowing into the river were 690 ug/L and 9,400 ug/L respectively.

The nutrient species of most concern are the dissolved inorganic nutrients, namely phosphate, total ammonia, and nitrate as these are the most bioavailable with the potential to fuel algal blooms. Most of the total phosphorus in the return water was phosphate. The average phosphate concentration discharging to the LVR was 620 ug/L, with a range of 160 ug/L to 1,200 ug/L. This represented 76% to 96% of the total phosphorus in the return water.

Total ammonia was the dominant form of nitrogen in the return water, making up an average of 60% of the TN at the point of discharge to the LVR. The remainder of the nitrogen was dissolved organic nitrogen (DON), with nitrate making up less than 2% of TN. The very low concentration of nitrate is expected, as porewater, the water found in sediment, is usually high in total ammonia and low in nitrate. This is because sediment and the return waters are low in oxygen and ammonium is more stable than nitrate in low oxygen environments. The average total ammonia concentration at the point of discharge was 5,600 ug/L with a range of 2,000 ug/L to 9,000 ug/L. The pH of the return water was 7.6 and at this pH the return water exceeds the ANZECC (2000) freshwater trigger value of 1,470 ug/L for ammonia toxicity.

The comparison of nutrient concentrations between the DWER monitoring location at the point of discharge to the LVR and the Project site in the LVR immediately following discharge (LVR-RW2) confirmed that the nutrient concentrations were significantly diluted immediately upon entering the LVR, with results at VASR2 (downstream but within the impact zone) and the downstream Project site (LVR-DS1) regularly exhibiting lower nutrient concentrations. More importantly, the chlorophyll results indicated that although elevated nutrients did enter the LVR via the return water discharge, no algal bloom, indicated by phytoplankton abundance, resulted due to the input.

The return water concentrations fell within the range of elutriate test results and this provides confidence that for future dredging projects the expected nutrient concentrations can be estimated by this standard laboratory test method prior to dredging.

4 Post-Dredge Sediment

Once the sediments sufficiently dewatered, samples were taken for the purpose of ASS and waste characterisation prior to removal from the tubes.

4.1 Acid Sulfate Soils: Initial Results

The sediments were sampled at a rate of one sample per 125 m³ (DER 2015) dewatered sediment, or 12 samples based on an estimated dewatered volume of 1,500 m³. ASS results are presented in Table C.

Initial ASS testing results indicated potential ASS (PASS) with extreme rates reaction in all samples. Chromium reducible sulfur (CRS) analysis was performed on five samples (>25% to provide greater certainty on results) and indicated that the samples were PASS, with no samples exhibiting signs of actual ASS.

The lime dosing rate calculated by the laboratory [highest being 146 kg/tonne (t)] surpassed the rate calculated in the ASSDMP (360 Environmental 2022b) using the baseline sediment data (130 kg/m³), so the laboratory liming rate was adopted as a conservative measure and to ensure the sediments did not require double treatment.

The ASS results indicated that the tubes provided a suitable environment to reduce the risk of acidification of the sediments, likely due to the anaerobic condition, and hence release of heavy metals into the LVR via the return water.

4.2 Waste Characterisation (Pre-Treatment) Results

The dewatered sediment was scheduled for waste characterisation for metals only based on a risk assessment from the sediment reuse options assessment (360 Environmental 2021a) and the baseline sediment quality data (360 Environmental 2021b) where metals were the key contaminant of concern. The solid waste characterisation results are included in Table D.

The initial contaminant threshold (CT) values for Class I were exceeded in all samples for six metals [arsenic (As), cadmium (Cd), lead (Pb), nickel (Ni), selenium (Se), and zinc (Zn)]. The Class III CT values were also exceeded for Pb in all samples and As in three of the 10 samples. All results were below the Class I Contaminant Level (CL) criteria so despite the noted exceedances of the CT Class III criteria, all samples were scheduled for leachate analysis by the Australia Standard Leachate Procedure (ASLP) with deionised water.

The leachate results are included in Table E and confirm that all samples are compliant with the Class I ASLP criteria meaning the material is suitable for disposal at a Class I landfill facility.

4.2.1 Uncontaminated Fill Assessment

Correspondence from DWER during the analysis process indicated that for the material to be used as day cover at a licensed landfill facility or to be applied as a soil amelioration, the material would be required to meet the Uncontaminated Fill (UC Fill) criteria (DER 2019). These discussions are ongoing however the results have been assessed against these criteria in the meantime and discussed below.

All samples exceeded the UC Fill criteria for Zn, As exceeded in five of the 10 samples, Ni in two of the 10 samples, and Se in four of the 10 samples. Assessment of the samples against the UC Fill leachable concentrations criteria confirmed that four of the 10 samples exceeded for As and six of the 10 samples exceeded for Zn. However, give the laboratory sample preparation and analysis had commenced when the request from DWER was received, the limits of reporting for some of the leachable concentrations were not able to be achieved with the standard waste characterisation methods. This does not change the overall assessment as there are still identified exceedances for two metals, however it is not possible to determine if other metals [Cd, hexavalent chromium (CrVI), cobalt (Co), copper (Cu), Pb, mercury (Hg), Se and silver (Ag)] would also exceed the UC Fill leachate criteria.

4.3 Acid Sulfate Soils: Post-Treatment Results

The sediments were transported to the Rendezvous Road Transfer Station and mixed with inert sand and treated with lime in accordance with Licence L7120/1997/12 (as amended August 2022). The lime dosing rate was 146 kg/t as recommended by the laboratory.

The post-treatment validation samples were analysed at a rate of one sample per 125 m³, or 28 samples based on the estimated total volume of material (2,556 m³) with sand and lime included, with 14 samples (50%) also analysed for the chromium reducible sulfur suite.

Most of the results, presented in Table F, confirmed that the sediments had been neutralised and were no longer classified as PASS with an ANC/PASS ratio ranging from 2.23 to 25.11 (average 10.18) which significantly exceeded the adopted safety factor of 1.5, with the exception of one result (TF_ASS14) which indicated that potential acidity remained. This could be expected given the clay content of the sediment. Given the excess acid neutralising capacity of all other samples, combined with the fact that the sediments would be further mixed during loading/unloading, it is concluded that the material was sufficiently neutralised for use as day cover at the landfill.

4.4 Waste Characterisation (Post-Treatment) Results

The sediment was scheduled for waste characterisation on 18 samples based on the dewatered sediment volume, including additional inert sand and lime (2,556 m³). Samples were taken following lime treatment on three separate occasions (dewatered sediment was treated in three separate batches) and scheduled for metals and a selection of other analytes to support a comprehensive risk assessment of the material for disposal.

All samples exceeded the CT1 criteria but were below the CL1 criteria for lead; four samples also exceeded the CT1 criteria but were below the CL1 criteria for arsenic and two samples also exceeded the CT1 criteria but were below the CL1 criteria for selenium.

Based on the CT and CL results, all samples were scheduled for ASLP leachate analysis for metals and the results, presented in Table H, confirmed that the material is below the ASLP1 criteria and therefore compliant with Class 1 criteria. The material is therefore suitable for disposal at a Class 1 landfill facility.

4.4.1 Uncontaminated Fill Assessment

Additional analysis on a selected number of samples was undertaken to allow comparison against the Uncontaminated Fill (UC Fill) criteria. There was a single exceedance of the UC fill maximum concentration criteria for sulfate and another for TRH (C16-34 fraction) in two separate samples (Table G). However, there were numerous exceedances of the UC Fill leachate criteria for metals and all samples that were scheduled for total nitrogen, total phosphorus and fluoride also exceeded the criteria (Table H), indicating that in its current state the material does not meet the definition of UC fill.

If the material was proposed for reuse it would require further treatment, revalidation and assessment against the UC fill criteria prior to deposition.

5 Conclusions and Recommendations

5.1 Conclusions

The primary environmental objective of the Stage 1 Dredging campaign was not to have an adverse impact on the water quality of the LVR or downstream wetland. The primary pathway was expected to be introduction of bioavailable nutrients resulting in a toxic algal bloom and although the discharge of the return water did introduce bioavailable nutrients at elevated concentrations, there was no resultant algal bloom as a result of the Project.

Concentrations of total nitrogen, total phosphorous, reactive phosphorous and ammonia were above the ANZG (2018) criteria in all return water samples (LVR-RW1), as expected, and in most of the samples from LVR-RW2, but also in most of the upstream (LVR-US) and far downstream (LVR-DS2) samples, which suggests that while the return water exhibited elevated nutrient concentrations, the LVR background concentrations were also elevated during the dredge program and the return water had negligible impact on the system, or downstream Vasse Wonnerup Wetland System.

The baseline elutriate data (360 Environmental 2022a) provided a good indication of the return water nutrient concentration, which is important to inform management for future stages of the dredging. On the other hand, the spectrophotometer (field nutrient analysis kit) did not perform reliably to provide in-situ nutrient concentrations.

The Phoslock dosing of the return water did not significantly reduce the phosphorous concentrations prior to discharge as hoped and the extended return water channel length with the inclusion of baffles and weirs also did not appear to be successful in reducing the ammoniacal nitrogen concentrations prior to discharge.

The dredging method was successful albeit progressing slower than initially expected due to the presence of debris (i.e. rocks, tree roots etc.) on the riverbed and with a temporary cessation due to the presence of a buried pipeline unexpectedly found in the dredge area. As expected, there was minimal riverbed disturbance resulting from the use of the microdredge and hence there was no visible turbid plume during the campaign.

There was no acidification of the sediments and generally the return water acidity was compliant with the guidelines (DER 2015a) and alkalinity was always in excess of the minimum criteria. It is expected that the lack of acidification is due to the enclosure of the sediments in the tubes providing anaerobic conditions and not facilitating oxygenation and acidification.

Post-treatment dredged sediments are suitable for disposal to a Class I landfill as day cover. However, in its current state the material does not meet the definition of UC fill. If the material was proposed for reuse it would therefore require further treatment, revalidation and assessment against the UC fill criteria prior to deposition.

5.2 Recommendations

Based on the outcomes of the Stage 1 Dredging, the following recommendations are made:

- Further investigation into phosphorous and/or ammoniacal nitrogen reduction methods to be implemented prior to the return water discharge into the LVR. One option is increasing the pH of the return water to convert ammonium to ammonia then oxygenate to volatilise ammonia.
- Prior to the Stage 2 dredging campaign, the ASSDMP should be updated and re-submitted to DCCEEW for approval to incorporate the following amendments:
 - o Revised monitoring program to allow active site selection for each area based on suitability and access, rather than a pre-determined distance
 - Revised testing regime, including but not necessarily limited to:
 - Removal of the requirement for the in-situ nutrient analysis with the spectrophotometer
 - Reduction in the ASS testing regime based on field pH and titrations as suitable indicators
 - Remove the requirement to deploy silt curtains at the extent of the active works area¹.
- Discuss the approach for disposal/reuse of the dewatered and treated sediments with DWER to ensure the most beneficial outcome is achieved.

360 Environmental Pty Ltd

17

¹ There was no visual turbid plume present during the dredging works and the field turbidity results were consistently higher at the upstream location (LVR-US) when compared to the sampling location within the works area (LVR-RW2). Further, recent experience

6 Limitations

This report is produced strictly in accordance with the scope of services set out in the contract or otherwise agreed in accordance with the contract. 360 Environmental makes no representations or warranties in relation to the nature and quality of soil and water other than the visual observation and analytical data in this report.

In the preparation of this report, 360 Environmental has relied upon documents, information, data, and analyses ("client's information") provided by the client and other individuals and entities. In most cases where client's information has been relied upon, such reliance has been indicated in this report. Unless expressly set out in this report, 360 Environmental has not verified that the client's information is accurate, exhaustive, or current and the validity and accuracy of any aspect of the report including, or based upon, any part of the client's information is contingent upon the accuracy, exhaustiveness, and currency of the client's information. 360 Environmental shall not be liable to the client or any other person in connection with any invalid or inaccurate aspect of this report where that invalidity or inaccuracy arose because the client's information was not accurate, exhaustive, and current or arose because of any information or condition that was concealed, withheld, misrepresented, or otherwise not fully disclosed or available to 360 Environmental.

Aspects of this report, including the opinions, conclusions, and recommendations it contains, are based on the results of the investigation, sampling and testing set out in the contract and otherwise in accordance with normal practices and standards. The investigation, sampling and testing are designed to produce results that represent a reasonable interpretation of the general conditions of the site that is the subject of this report. However, due to the characteristics of the site, including natural variations in site conditions, the results of the investigation, sampling and testing may not accurately represent the actual state of the whole site at all points.

It is important to recognise that site conditions, including the extent and concentration of contaminants, can change with time. This is particularly relevant if this report, including the data, opinions, conclusions, and recommendations it contains, are to be used a considerable time after it was prepared. In these circumstances, further investigation of the site may be necessary.

Subject to the terms of the contract between the Client and 360 Environmental Pty Ltd, copying, reproducing, disclosing, or disseminating parts of this report is prohibited (except to the extent required by law) unless the report is produced in its entirety including this page, without the prior written consent of 360 Environmental Pty Ltd.

7 References

360 Environmental 2022a, Dredge Management Plan, prepared for the City of Busselton.

360 Environmental 2022b, Acid Sulfate Soils and Dewatering Management Plan, prepared for the City of Busselton.

360 Environmental 2021a, Sediment Reuse Options Assessment, prepared for the City of Busselton.

360 Environmental 2021b, Lower Vasse River Baseline Investigation, prepared for the City of Busselton.

Beatty S., Cottingham A., Lymbery A., and Paice. R 2021, Environmental Management Plan for Carter's Freshwater Mussel (Westralunio carteri), prepared for City of Busselton by members of the Centre for Sustainable Aquatic Ecosystems – Harry Butler Institute and Ottelia Ecology.

Department of Environmental Regulation (DER, now DWER) 2015a, Identification and investigation of acid sulfate soils and acidic landscapes, published June 2015.

DER (now DWER) 2015b, Treatment and management of soil and water in acid sulfate soil landscapes, published June 2015.

DER (now DWER) 2019, Landfill Waste Classification and Waste Definitions 1996 (as amended 2019).

Department of Water and Environmental Regulation (DWER) and Department of Primary Industries and Regional Development (DPIRD) 2019, Lower Vasse River Waterway Management Plan, May 2019.

DWER 2022, Report on water quality during the Lower Vasse River dredging project 2022, internal reference document, prepared

Tables

City of Busselton Lower Vasse River Stage 1 Dredge Monitoring Table A: Surface Water In-situ Results

Analyte Group				Physicochemical Parameters			Acid Sull	ate Soils	Nutr	ients
Analyte		Temperature	pH	Specific Conductivity	Turbidity	Dissolved Oxygen	Total titratable acidity	Total alkalinity	Phosphate as P	Ammonia as N
-		*C	pH units	uSicm	NTU					
Units	ANZECC&ARMCANZ (2000) Lowland River	·C	6.5-8.0	usicm	10-20	mg/L 7.2-10.9	mg/L	mg/L	mg/L 0.04	mg/L 0.90
Assessment Criteria	DER 2015 ASS Guidelines		6.0				40	30*		
	LVR Baseline (December 2021)		7.3		74	7.5			0.20	0.01
Sample ID	Date Sampled									
	28-04-2022	19.7	7.6	6893	30	2.6	14	430	1.01	4.3
	29-04-2022	18.4	7.6	7071	34	3.1	20	400	0.13	2.75
	02-05-2022	20.4	8.0	7349	26	4.1	72	390	1.36	>10.0
	03-05-2022	17.3	7.6	7947	39	2.3	36	540	2.43	>10.0
	04-05-2022	18.5	7.5	5980	17	4.7	60	330	2.15	5.51
	10-05-2022	20.2	7.6	6626	25	4.1	91	480	1.45	9.68
LVR-RW1	12-05-2022 19-05-2022	16.1 21.1	7.7	5971 4441	18	4.2	19	492 462	5.55	8.47 3.00
	19-05-2022 24-05-2022	21.1	7.6	4441 6061	35	4.6 3.4	29	486	2.27 1.65	6.29
	01-06-2022	20.1	8.5	6894	21	5.3	12	366	1.85	6.21
	02-06-2022	16.9	7.6	4900	27	3.3	NT	NT	1.71	6.12
	07-06-2022	17.4	8.2	5394	17	6.8	23	468	1.86	4.10
	16-06-2022	23.3	8.7	4989	27		0	534	NT	NT
	27-04-2022	19.5	8.8	5475	115	12.0	10	280	0.00	0.44
	28-04-2022	19.7	8.4	5721	31	9.8	10	300	0.72	0.69
	29-04-2022	16.8	8.6	5318	59	8.0	10	360	0.05	0.12
	02-05-2022	17.8	8.8	5428	43	16.2	0	267	0.02	0.28
	03-05-2022	16.7	8.3	5551 5660	57	7.6	34	234	0.08	0.25
	04-05-2022 10-05-2022	16.9 19.0	8.5 8.2	5660 5801	41	11.6	36 34	267 342	1.09 0.23	4.20 3.20
LVR-RW2	10-05-2022	16.2	8.2	5182	24	6.7	34 26	342 312	0.60	2.32
	19-05-2022	17.6	8.1	3922	22	8.9	29	342	0.41	2.18
	24-05-2022	16.6	8.1	4586	21	8.6	25	684	0.63	2.77
	01-06-2022	16.8	7.9	5202	17	5.6	19	354	0.76	2.37
	02-06-2022	16.7	7.8	4433	17	6.0	NT	NT	0.97	3.24
	07-06-2022	15.8	8.3	4484	19	12.3	26	417	0.38	1.65
	16-06-2022	16.4	8.5	2477	16	14.0	0	408	NT	NT
	28-04-2022	19.1	8.9	6143	115	12.0	0	300	0.05	0.72
	29-04-2022	17.0	8.7	6043	62	8.8	0	250	0.01	0.83
	02-05-2022	16.0 16.5	8.5	5936 5967	59	9.2	0 18	180 246	0.05	0.36
	03-05-2022	16.0	8.6	5967	65	10.2	0	246	0.02	0.24
	10-05-2022	15.9	8.6	5882	55	12.9	0	267	0.06	0.35
LVR-US	12-05-2022	15.2	8.6	4722	41	10.6	0	276	0.30	0.20
	17-05-2022	15.8	8.3	4555	50	9.8	0	351	0.02	0.29
	19-05-2022	16.0	8.2	4082	43	9.1	20	264	0.00	0.41
	24-05-2022	17.2	8.3	4616	32	10.8	17	294	0.14	0.24
	01-06-2022	14.2	8.2	4890	24	10.4	15	279	0.05	0.36
	07-06-2022	13.6	8.3	4234	21	10.8	27	381	0.04	0.52
	16-06-2022	15.4	8.3	1821	16	12.3	18	351	NT	NT
	28-04-2022 29-04-2022	18.1 16.1	8.4	6734 6134	86 41	4.5 4.5	0 5	240 300	0.08	0.12
	29-04-2022 02-05-2022	16.1	8.9	6311	25	4.5	0	300 321	0.06	0.00
	03-05-2022	15.9	8.7	6591	31	6.5	0	345	0.16	0.33
	04-05-2022	16.4	8.7	6939	35	9.4	0	276	0.26	0.43
	10-05-2022	14.8	8.6	6751	32	9.0	0	360	0.03	0.48
LVR-DS1	12-05-2022	15.6	8.5	4909	28	6.6	0	327	0.08	0.27
	17-05-2022	16.5	8.4	5375	26	9.4	0	381	0.11	0.30
	19-05-2022	16.0	8.2	4138	24	8.1	21	357	0.09	0.61
	24-05-2022	16.4	7.8	4256	79	6.2	33	411	0.36	1.35
	01-06-2022	14.3	7.5	5149 5091	14	1.4	30	360	0.43	3.15
	07-06-2022 16-06-2022	12.8	7.5 8.6	2000	16 17	2.7	32 0	417	0.29 NT	3.74 NT
	16-06-2022 28-04-2022	15.7 21.0	8.6	2000 9119	17 28	14.1	0	408	NT 0.21	NT 0.36
	29-04-2022	11.7	8.7	4515	22	8.8	0	330	0.35	1.44
	02-05-2022	19.7	8.4	9474	28	8.4	0	267	0.47	0.47
	03-05-2022	15.4	8.2	9346	34	5.7	21	339	0.70	0.63
LVR-DS2	04-05-2022	14.9	8.2	9027	50	6.8	31	315	0.53	0.68
LWR-DS2	10-05-2022	13.7	8.3	9433	46	8.0	56	402	0.03	0.91
	12-05-2022	14.6	8.1	7045	31	5.4	46	366	0.23	0.52
	01-06-2022	14.0	7.5	6046	19	1.8	NT	NT	0.19	4.17
	07-06-2022	12.1	7.5	5718	19	2.5	34	384	0.12	4.98
	16-06-2022	15.5	7.8	2717	15	6.5	0	408	NT	NT

Amelyte Crown					Nutrients				Algae		Acid Sulfate Soil						Metals	(Total)									Matels /I	Dissolved)				
Analyle Group			2	I	HOURTES				- Ayac		ALIA SAIGIC SOIL	,					meuns	(rom)									metars (c	Justice				
Analyte		(otal Mitogen (as N)	fotal Kjeldahl Mtrogen (as N	VOx (as N)	mmonia as N	Ammonium as N	fotal Phosphorous (as P)	Poscibre Phosphorus as P	Złorophyll a,b,c & Phaeoph	*	chility (as CaCO3)	rotal Alkalinity (as CaCCB)	4umhium (Al)	r senic (As)	Cadmium (Cd)	Chromium (Gridal)	Capper (Cu)	ron (Fe)	.ead (Pb)	Mercury (Hg)	dictor) (NO)	Sinc (Zn)	Yumhium (Al)	r senic (As)	Cadmium (Cd)	Chromium (Gridal)	Opper (Cu)	ron (Fe)	(ad) peo-	Mercury (Hg)	dichel (NQ)	Src (Zn)
LOR		0.1	0.1	0.01	0.01	0.01	0.01	0.01	0.001	0.01	1	1	0.01	0.001	0.0001	0.001	0.001	0.05	0.001	0.0004	0.001	0.005	0.01	0.001	0.0001	0.001	0.001	0.05	0.001	0.0004	0.001	0.005
Units		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pH units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	ANZECC&ARMCANZ (2000) Lowland River	1.20		0.15	0.90	0.80	0.07	0.04	0.05	6.5-8.0																						
	ANZECC&ARMCANZ (2018) Recreational			0.045	0.91								0.2	0.05	0.005	0.05	1	0.3	0.05	0.001	0.1	5	0.2	0.05	0.005	0.05	1	0.3	0.05	0.001	0.1	5
Assessment Criteria	ANZECC&ARMCANZ (2018) Freshwater DER (2015) ASS Guidelines							****		6.0	40	30	0.055	0.013	0.0002	0.001	0.0014		0.0034	0.0006	0.011	0.008	0.055	0.013	0.0002	0.001	0.0014	****	0.0034	0.0006	0.011	0.008
	LVR Raseline (December 2021)	1.7	1.7	0.01	0.01	0.01	0.45	0.20		8.2	40	30	0.13					0.7										0.4				
Sample ID	Date Sampled		1.7	0.01	0.01	0.01	0.45	0.10		0.1		-		-				0.7		-								0.4			-	
Sample ID	28-04-2022	8.9	8.9	<0.01	5.81		1.27	1.17		8.14	6	363	0.23	0.006				0.51					<0.01	0.005								
	28-04-2022 02-05-2022	9.6	9.6	<0.01	7.26		0.97	0.9	NT NT	8.14 8.15	20	363 399	0.23	0.006	<0.0001	<0.001	<0.001	0.51	0.001	<0.00004	<0.001	0.005	<0.01	0.005	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
	04-05-2022	10.9	10.9	<0.01	7.98		1.59	1.44	NT	8.2	5	377	0.07	0.007	<0.0001	0.009	0.001	0.15	<0.001	<0.00004	<0.001	<0.005	<0.01	0.006	<0.0001	<0.001	<0.001	<0.05	<0.001	< 0.00004	<0.001	<0.005
	10-05-2022	11.0	11.0	0.01	4.34		0.81	0.6	NT	8.15	8	330	0.39	0.005	<0.0001	<0.001	0.002	0.56	0.001	<0.00004	<0.001	<0.005	<0.01	0.004	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
LVR-RW1	12-05-2022 19-05-2022	9.8 7.0	9.8 7.0	0.01	7.21 2.68		1.31 0.55	1.32 0.34	NT NT	7.75 7.93	12 13	354 239	0.28	0.004	<0.0001	<0.001 <0.001	<0.001	0.31	0.002	<0.00004	<0.001	<0.005 0.006	<0.01	0.004	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
Linkini	24-05-2022	10.6	10.6	0.04	5.51		0.58	0.49	NT NT	8.01	10	296	0.42	0.002	<0.0001	<0.001	0.001	0.62	0.002	<0.00004	<0.001	<0.005	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	< 0.00004	<0.001	<0.005
	01-06-2022	6.5	6.5	0.03	4.61		0.67	0.62	NT	8.44	<1	338	0.13	0.005	<0.0001	<0.001	< 0.001	0.07	0.001	<0.00004	<0.001	<0.005	<0.01	0.005	<0.0001	<0.001	<0.001	<0.05	<0.001	< 0.00004	< 0.001	<0.005
	02-06-2022 07-06-2022	9.0 6.6	8.9 6.5	0.12	3.93 3.69		0.58	0.54	NT NT	NT 8.04	NT 2	NT 308	NT 0.11	NT 0.003	NT -0.0001	NT <0.001	NT <0.001	NT 0.12	NT <0.001	NT	NT <0.001	NT -0.005	NT <0.01	NT 0.003	NT -0.0001	NT <0.001	NT -0.001	NT -0.05	NT -0.001	NT connor	NT <0.001	NT <0.005
	07-06-2022 16-06-2022	7.7	7.7	< 0.01	1.64			0.67	NT NT	8.04	<1	308 287	0.11	0.003	<0.0001	<0.001	0.001	0.12	<0.001	<0.00004	<0.001	<0.005	<0.01	0.003	<0.0001	<0.001	0.002	<0.05	<0.001	<0.00004	<0.001	<0.005
	27-04-2022	6.5	6.5	<0.01	0.04		0.77	<0.01	NT	8.59	<1	228	0.51	0.003	<0.0001	<0.001	0.001	0.85	0.001	<0.00004	<0.001	0.019	0.02	0.002	<0.0001	<0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
	28-04-2022	4.6	4.6	< 0.01	0.68		0.57	0.03	NT	8.46	<1	246	0.22	0.003	<0.0001	<0.001	< 0.001	0.41	<0.001	<0.00004	<0.001	0.008	0.02	0.003	<0.0001	< 0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
	02-05-2022 04-05-2022	3.6 6.2	3.6	<0.01	0.01 2.37		0.35	<0.01	NT NT	8.68 8.33	- <1	245 284	0.12 0.11	0.002	<0.0001	<0.001 <0.001	<0.001	0.23	<0.001	<0.00004	<0.001	<0.005	0.01	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
	10-05-2022	5.4	5.4	0.01	1.85		0.43	0.16	NT	8.27	<1	284	0.11	0.003	< 0.0001	<0.001	<0.001	0.19	<0.001	<0.00004	<0.001	<0.005	<0.01	0.003	<0.0001	<0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
LVR-RW2	12-05-2022	5.3	5.3	0.02	2.77		0.44	0.37	NT	7.95	5	262	0.17	0.003	<0.0001	<0.001	< 0.001	0.21	0.002	<0.00004	<0.001	0.01	0.01	0.002	<0.0001	< 0.001	<0.001	<0.05	<0.001	< 0.00004	< 0.001	<0.005
	19-05-2022 24-05-2022	3.3	3.2	0.06	1.02		0.14	0.02	NT NT	8.28 8.26	3	220 225	0.07	0.002	<0.0001	<0.001	< 0.001	0.14	<0.001	<0.00004	<0.001	<0.005	0.01	0.002	<0.0001	< 0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
	01-06-2022	3.9	3.9	0.08	2.57		0.14	0.09	NT NT	8.15	6	273	0.12	0.002	<0.0001	<0.001 <0.001	<0.001	0.14	<0.001	<0.00004	<0.001	<0.005	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	< 0.001	<0.005
	02-06-2022	5.5	5.4	0.14	2.8		0.36	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	07-06-2022	3.4	3.2	0.17	1.58		0.26	0.19	NT NT	8.18	<1	268	0.07	0.002	<0.0001	<0.001	<0.001	0.16	<0.001	<0.00004	<0.001	< 0.005	<0.01	0.002	<0.0001	< 0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
	16-06-2022 28-04-2022	1.7 4.7	1.7	<0.01	0.02		0.18 0.5	0.01	0.34	8.63 8.71		152 232	0.04	0.001	<0.0001	<0.001	<0.001	0.5 0.31	<0.001	<0.00004	<0.001	<0.005	0.03	0.002	<0.0001	<0.001	0.002	<0.05	<0.001	<0.00004	<0.001	<0.005
	02-05-2022	4.8	4.8	< 0.01	<0.01		0.48	<0.01	0.30	8.45	<1	229	0.15	0.003	<0.0001	<0.001	< 0.001	0.32	<0.001	<0.00004	<0.001	< 0.005	0.02	0.003	<0.0001	< 0.001	<0.001	<0.05	<0.001	< 0.00004	< 0.001	<0.005
	04-05-2022 10-05-2022	4.5 3.9	4.5 3.9	< 0.01	0.03		0.39	<0.01	0.39	8.55 8.77	- <1	224 215	0.12	0.004	<0.0001	<0.001	<0.001	0.22	<0.001	<0.00004	<0.001	<0.005	0.02	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
LVR-US	12-05-2022	3.7	3.7	<0.01	<0.01		0.29	<0.01	0.24	8.44	<1	215	0.11	0.002	< 0.0001	<0.001	<0.001	0.23	<0.001	<0.00004	<0.001	< 0.005	0.01	0.002	< 0.0001	< 0.001	<0.001	<0.05	< 0.001	< 0.00004	< 0.001	<0.005
LVKOS	19-05-2022 24-05-2022	4.3 2.7	4.3 2.7	0.01	0.1		0.4	<0.01	0.18	8.07 8.43	5	194 186	0.1	0.002	<0.0001	<0.001	<0.001	0.33	<0.001	<0.00004	<0.001	<0.005	< 0.01	0.002	< 0.0001	< 0.001	<0.001	<0.05	< 0.001	< 0.00004	<0.001	<0.005
	01-06-2022	3.1	3.1	0.01	0.02		0.22	<0.01	0.12	8.17	2	200	0.1	0.002	<0.0001	<0.001	<0.001	0.24	<0.001	<0.00004	<0.001	<0.005	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05	< 0.001	< 0.00004	<0.001	<0.005
	07-06-2022	3.1	3.1	0.04	0.29 <0.01		0.24	<0.01	0.174	8.21	<1	211	0.06	0.002	<0.0001	<0.001	<0.001	0.25	<0.001	<0.00004	<0.001	< 0.005	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	< 0.00004	<0.001	<0.005
	16-06-2022 28-04-2022	1.7	1.7	<0.01	0.03		0.19	0.01	0.15	8.19 8.77	- <1	143 245	0.04	0.001	<0.0001	<0.001	<0.001	0.7	<0.001	<0.00004	<0.001	0.006	0.01	0.001	<0.0001	<0.001	<0.001	0.26	<0.001	<0.00004	<0.001	<0.005
	02-05-2022	3.7	3.7	<0.01	<0.01		0.39	0.01	0.13	8.7	<1	267	0.11	0.002	<0.0001	<0.001	<0.001	0.35	<0.001	<0.00004	<0.001	<0.005	0.01	0.002	< 0.0001	<0.001	<0.001	0.07	< 0.001	< 0.00004	<0.001	<0.005
	04-05-2022	5.1	5.1	< 0.01	0.03		0.63	0.09	0.15	8.55 8.64	<1	284	0.61	0.003	<0.0001	<0.001	0.001	1.37	0.002	<0.00004	<0.001	0.01 <0.005	0.01	0.002	<0.0001	<0.001	<0.001	0.12	<0.001	<0.00004	< 0.001	<0.005 <0.005
	10-05-2022 12-05-2022	4.6 4.2	4.6	<0.01	0.02 <0.01		0.52	<0.01	0.19	8.64	- 4	286 254	0.11	0.003	<0.0001	<0.001	<0.001	0.46	<0.001	<0.00004	<0.001	<0.005 0.011	0.05	0.002	<0.0001	<0.001	<0.001	0.16 <0.05	<0.001	<0.00004	<0.001	<0.005
LVR-DS1	19-05-2022	4.0	4.0	0.04	0.43		0.39	0.06	0.02	8.08	6	227	0.08	0.002	<0.0001	<0.001	<0.001	0.4	<0.001	<0.00004	<0.001	0.006	<0.01	0.002	<0.0001	<0.001	<0.001	0.09	< 0.001	0.00027	<0.001	<0.005
	24-05-2022	2.9	2.8	0.09	1		0.15	0.05	0.08	8.17	4	216	0.05	0.002	<0.0001	<0.001	0.019		<0.001	<0.00004	<0.001	0.012	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05	<0.001	<0.00004	<0.001	<0.005
	01-06-2022 07-06-2022	6.4 5.6	6.4 5.6	0.03	2.79 3.53		0.47	0.14	- 4	8.04 7.88	8	260 274	0.05	0.002	<0.0001	<0.001 <0.001	<0.001	0.86	<0.001	<0.00004	<0.001	<0.005 <0.005	<0.01	0.002	<0.0001	<0.001	<0.001	<0.05 0.18	<0.001	<0.00004	<0.001	<0.005
	16-06-2022	2.5	2.5	0.03	0.49		0.19	0.01	0.16	8.19	<1	184	0.08	<0.001	<0.0001	<0.001	<0.001	0.66	<0.001	<0.00004	<0.001	< 0.005	<0.01	0.001	<0.0001	<0.001	<0.001	0.19	<0.001	<0.00004	<0.001	<0.005
	28-04-2022	5.5	5.5	<0.01	0.1		0.68	0.12	0.08	8.72	<1	263	0.22	0.004	<0.0001	<0.001	0.001	1.32	0.001	<0.00004	0.001	0.007	0.02	0.003	<0.0001	<0.001	<0.001	0.42	< 0.001	< 0.00004	0.001	0.007
	02-05-2022 04-05-2022	5.9 8.0	5.9 8.0	<0.01	0.41		0.68 1.01	0.15 0.15	0.02	8.31 8.27	4 2	298 309	0.2 1.29	0.003	<0.0001	<0.001 0.002	0.001	2.27 4.35	0.001	<0.00004	0.002	0.006 0.022	0.01	0.003	<0.0001	<0.001	<0.001	0.66	<0.001	<0.00004	0.001	<0.005
	10-05-2022	7.0	7.0	<0.01	0.05		0.7	0.04	0.14	8.22	2	312	0.17	0.003	<0.0001	<0.001	< 0.002	3.66	<0.001	<0.00004	0.002	<0.005	<0.01	0.002	<0.0001	<0.001	<0.001	0.5	<0.001	< 0.00004	<0.001	<0.005
LVR-DS2	12-05-2022	6.7	6.7	0.01	0.02		0.75	0.08	0.12	7.86	8	273	0.07	0.002	<0.0001	<0.001	<0.001	1.57	<0.001	<0.00004	<0.001	<0.005	<0.01	0.002	< 0.0001	<0.001	<0.001	0.19	< 0.001	< 0.00004	0.001	<0.005
	01-06-2022	6.6	6.6	<0.01	3.66		0.26	0.06	NT	NT	NT	NT	0.07	0.002	<0.0001	<0.001	<0.001	1.57	<0.001	<0.00004	<0.001	<0.005	<0.01	0.002	<0.0001	<0.001	<0.001	0.19	< 0.001	< 0.00004	0.001	<0.005
	07-06-2022 16-06-2022	6.4 3.5	6.4	<0.01	4.23 1.3	-	0.16 0.23	0.04	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	02-05-2022	2.71	NT	<0.01	<0.01	NT	0.19	<0.05	0.26	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	09-05-2022	3.48	NT	0.019	0.011	NT	0.32	0.005	0.28	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	18-05-2022 24-05-2022	1.81 2.01	NT NT	0.096	0.405 0.551	NT	0.16 0.11	0.021	0.10	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT
VASR2	24-05-2022 30-05-2022	3.59	NT NT	0.141	1.52		0.11	0.009	0.07	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	07-06-2022	3.34	NT	0.28	1.53		0.27	0.138	0.08	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	13-06-2022	2.06	NT	0.03	<0.01		0.21	0.006	0.15	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	23-06-2022 27-06-2022	2.84	NT	0.39	0.70		0.33	0.143 0.127	0.10	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT	NT pr	NT	NT
	21-06-2022	2.76	N1	0.67	0.60		0.30	0.127	0.00	REI	N1	NI	N1	NI	NI	NI	N1	NI	RI	NI	NI	N1	NI	N1	N1	NI NI	NI NI	NI I	NI	761	NI.	TEI

Notes

AMECC 6.4 ASML-MAZ 2019. Values tubulated are based on slightly to moderately disgraded ecopytams - 59% Protection Level

AMECC 6.4 ASML-MAZ 2019. Values tubulated are based on slightly to moderately disgraded ecopytams - 59% Protection Level

1,508 Baselow- Values- based on energing or BRINNa+ of data of attended in December 2017 (where values were -4,CR, LOR was adopted)

EICR (2019) ASS (palled-on-scalety) is an upper limit, alkalinity and pit are baser limit.

ILOR - limits of reporting

mpl - military pare title

upt - micrograms per title

upt - micrograms per title

upt - collected in the control of the control of control

City of Busselton Lower Vasse River Stage 1 Dredging Table C: Pre-treatment Acid Sulfate Soil Analytical Results

				Acid Sulfat	Soils Field							Laborator	y Results and Ca	alculations						
				Fiel			pH _{KCI}	Potential Su	Ifidic Acidity	Actual	Acidity	Acid Neutrali			Acidity		Minus Acid	Lime Ca	lculation	
Sample ID	Date Sampled	ALS Laboratory Sample Number	$pH_{\rm F}$	pH _{FOX}	pH Change	Reaction	pH _{KCI}		ducible Sulfur RS)	Titratable A	ctual Acidity					nedu dii Si	ng oupuony	Liming Rate	Lime rate excl ANC	ASS Interpretation
			0.1	0.1	0.1	-	0.1	0.005	10	0.02	2	0.01	10	0.02	10	0.02	10	-	95	
			pH units	pH units	pH units	-	pH Units	%S	mol H ⁺ /t	%S	mol H ⁺ /t	%S	mol H*/t	%S	mol H ⁺ /t	%S	mol H ⁺ /t	kg/CaCO3/t	kg Aglime/t	
			<5.5	<3.0	>3.0	>2	-	-	-	-	-	-	-	0.03	18	0.03	18	-	-	
SS01 ASS a	21-09-2022	EP2212605-003	7.8	1.8	6	Extreme	7.6	2.37	1480	<0.02	<2	0.39	243	2.11	1320	2.37	1480	99	111	PASS
SS01 ASS b	21-09-2022	EP2212605-004	7.8	2	5.8	Extreme	6.5	2.04	1270	<0.02	<2	0.25	157	1.87	1160	2.04	1270	87	95	PASS
SS02 ASS a	21-09-2022	EP2212605-007	7.7	2	5.7	Extreme	7.5	3.12	1950	<0.02	<2	0.63	395	2.7	1680	3.12	1950	126	146	PASS
SS02 ASS b	21-09-2022	EP2212605-008	7.4	2	5.4	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
SS03 ASS a	21-09-2022	EP2212605-011	7.3	2.1	5.2	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
SS03 ASS b	21-09-2022	EP2212605-012	7.5	2.7	4.8	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
SS04 ASS a	21-09-2022	EP2212605-015	7.6	2.4	5.2	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
SS04 ASS b	21-09-2022	EP2212605-016	7.6	2.2	5.4	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
SS04 ASS c	21-09-2022	EP2212605-017	7.9	2.1	5.8	Extreme	7.7	2.91	1810	<0.02	<2	0.62	384	2.5	1560	2.91	1810	117	136	PASS
SS05 ASS a	21-09-2022	EP2212605-020	7.7	2	5.7	Extreme	7.4	2.74	1710	<0.02	<2	0.49	304	2.42	1510	2.75	1710	113	128	PASS
SS05 ASS b	21-09-2022	EP2212605-021	7.6	1.9	5.7	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
SS05 ASS c	21-09-2022	EP2212605-022	7.7	2.2	5.5	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-

Acronyms:

mbgl indicates metres below ground level

%S = percentage sulfur
"---" = criteria have not been derived for these chemical constituents/compounds.

PASS = Potential Acid Sulfate Soil

NASS = Non Acid Sulfate Soil

AASS = Actual Acid Sulfate Soil

ANC = Acid Neutralising Capacity

Font and Cell :

- Coloured cells indicate exceedence of relevant assessment criteria

- Bolded analytical data indicates detection above LOR

Department of Water and Environmental Regulation (formerly Department of Environment Regulation), 2015. Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes. Western Australia.

City of Busselton Lower Vasse River Stage 1 Dredging Table D: Pre-treatment Waste Characterisation Results

								Sample ID	SS01a	SS01b	SS02a	SS02b	SS03a	SS03b	SS04a	SS04b	SS05a	SS05b
								Sample Date	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022
	_	1			1		Labor	atory Reference No.	EP2214298-001	EP2214298-002	EP2214298-003	EP2214298-004	EP2214298-005	EP2214298-006	EP2214298-007	EP2214298-008	EP2214298-009	EP2214298-010
		Cor	ntaminant Threshold	(CT)	Uncontaminated Fill	C	Contaminant Level (C	L)										
Analyte	Units	CT1/2 Class I	CT3 Class III	CT4 Class IV	UC Fill	CL1Class I/II	CL3 Class III	CL4 Class IV										
Metals																		
Aluminium ^a	mg/kg	50,000	100,000	200,000	-	50,000	100,000	200,000	10300	10200	15500	14800	15600	17800	14800	12200	14100	13300
Arsenic	mg/kg	14	140	1,400	100	50,000	100,000	200,000	92	87	156	152	136	160	134	109	120	123
Barium ^a	mg/kg	50,000	100,000	200,000	500	50,000	100,000	200,000	50	40	60	60	60	70	60	50	60	60
Beryllium	mg/kg	2	20	200	4	50	500	2,000	<1	<1	2	2	2	2	<1	<1	2	<1
Boron ^a	mg/kg	50,000	100,000	200,000	-	50,000	100,000	200,000	<50	<50	50	<50	50	60	50	<50	50	50
Cadmium	mg/kg	0.4	4	40	1	50,000	100,000	200,000	0.5	0.4	0.7	0.6	0.6	0.6	0.6	0.5	0.6	0.6
Chromium (hexavalent)	mg/kg	10	100	1,000	1	50,000	100,000	200,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt a	mg/kg	50,000	100,000	200,000	50	500	5,000	20,000	10	9	11	11	12	14	11	10	11	11
Copper ^a	mg/kg	50,000	100,000	200,000	50	100	1,000	4,000	41	36	77	66	62	67	60	51	52	51
Lead	mg/kg	2	20	200	300	100	1,000	4,000	65	59	97	93	93	102	83	74	81	79
Manganese ^a	mg/kg	50,000	100,000	200,000	500				154	148	178	181	210	238	190	163	181	181
Mercury	mg/kg	0.2	2	20	0.5	50,000	100,000	200,000	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2
Molybdenum	mg/kg	10	100	1,000	10	1,500	15,000	60,000	5	6	6	6	7	8	7	6	7	6
Nickel	mg/kg	4	40	400	10	75	750	3,000	8	7	11	10	10	12	10	9	10	9
Selenium	mg/kg	2	20	200	1	1,000	10,000	40,000	2	2	3	3	3	3	3	2	2	3
Silver	mg/kg	20	200	2,000	20	3,000	30,000	120,000	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Vanadium ^a	mg/kg	50,000	100,000	200,000	130	180	1,800	7,200	20	20	25	25	27	30	25	21	26	24
Zinc ^a	mg/kg	50,000	100,000	200,000	120	50,000	100,000	200,000	214	152	229	241	256	295	252	198	199	198

*a CT values derived as % by weight. If waste malerial contains significant quantities of these metals, preference should be given to recovery and recycling, rather than disposal.
CT1 Class I, CT2 Class II, CT3 Class III and CT4 Class IV are maximum values of total concentration for classification without the requirements to assess leachability.
Waste limits are in accordance with the Department of Environment Regulation (DER) Landfill Waste Classification and Waste Definitions 1996, (as amended 2018).

Acronyms: CT = Contaminant Threshold

mbgl = meters below ground level LOR = Limit of Reporting

mg/kg = milligrams per kilogram

---- = No CT guideline value has been developed for this analyte

Font and Cell:

- Coloured cells indicate exceedence of relevant assessment criteria

- Bolded analytical data indicates detection above LOR

City of Busselton Lower Vasse River Stage 1 Dredging Table E: Pre-treatment Waste Characterisation Leachate Results

					Sample ID	SS01a	SS01b	SS02a	SS02b	SS03a	SS03b	SS04a	SS04b	SS05a	SS05b
					Sample Date	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022	21-09-2022
					Analysis Type	Leachate									
				Laborato	ry Reference No.	EP2214298-001	EP2214298-002	EP2214298-003	EP2214298-004	EP2214298-005	EP2214298-006	EP2214298-007	EP2214298-008	EP2214298-009	EP2214298-010
		L	eachable Conce	ntrations											
Analytes	Units	ASLP1 Class I/II	ASLP1 Class III	ASLP1 Class IV	UC Fill										
Metals															
Arsenic	mg/L	0.5	5	50	0.01	0.01	0.01	0.02	0.01	0.01	<0.01	0.02	0.01	0.02	0.02
Beryllium	mg/L	0.1	1	10		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	mg/L	0.1	1	10	0.0002	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium (hexavalent)	mg/L	0.5	5	50	0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt a	mg/L				0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper ^a	mg/L				0.002	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Lead	mg/L	0.1	1	10	0.003	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese ^a	mg/L				0.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Mercury	mg/L	0.01	0.1	1	0.00005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	0.5	5	50	0.05	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02
Nickel	mg/L	0.2	2	20	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Selenium	mg/L	0.5	5	50	0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	mg/L	1	10	100	0.00005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc ^a	mg/L				0.01	0.02	0.01	0.01	0.02	0.02	<0.01	0.02	0.01	0.02	0.02

- ^a CL values derived as % by weight.
- CL1 Class I, CL2 Class II, CL3 Class III and CL4 Class IV are the concentration limits for waste classification. CL values determined as: Class I = HIL Commercial Industrial, Clas II = Class I, Class III = 10 x Class I, Class IV = 100 x Class I
 ASI.P values determined as: Class I = 10 x Australian Drinking Water Health Guideline (ADWG) value, Clas II = Class I, Class III = 10 x Class I, Class IV = 100 x Class I Uncontaminated Fill criteria were added after the laboratory analysis was completed and as a result some LORs do not meet the guidelines

- Acronyms: CL = Concentration Limit
- ASLP = Leachable Concentration
- UC Fill = Uncontaminated Fill
- mbgl = meters below ground level
- LOR = Limit of Reporting
- mg/kg = milligrams per kilograms mg/L = milligrams per litre
- ---- = No guideline value has been developed for this analyte.

Font and Cell :

- Coloured cells indicate exceedence of relevant assessment criteria
- Bolded analytical data indicates detection above LOR

City of Busselton Lower Vasse River Stage 1 Dredging Table F: Post-treatment Acid Sulfate Soil Validation

				Acid Sulfate	Soils Field							Laborator	y Results and Ca	alculations						
				Fiel	d pH		pH _{KCI}	Potential Su	Ifidic Acidity	Actual	Acidity	Acid Neutrali	ising Capacity	Net A	Acidity		eutralising PASS Ratio	Lime Ca	culation	
Sample ID	Date Sampled	ALS Laboratory Sample Number	pH_F	pH _{FOX}	pH Change	Reaction	рНксі	Chromium Re (Cl	ducible Sulfur RS)	Titratable A	ctual Acidity							Liming Rate	Lime rate excl ANC	ASS Interpretation
			0.1	0.1	0.1	-	0.1	0.005	10	0.02	2	0.01	10	0.02	10	0.02	10	-	95	
			pH units	pH units	pH units >3.0	>2	pH Units	%S -	mol H ⁺ /t	%S	mol H ⁺ /t	%S	mol H ⁺ /t	%S 0.03	mol H*/t	%S >1.5	mol H*/t	kg/CaCO3/t	kg Aglime/t	
TF_ASS1	29-11-2022	EP2216255-001	8.0	5.8	2.2	Moderate	8.9	0.42	262	<0.02	<2	2.97	1850	<0.02	<10	7.07	7.06	<1	20	Neutralised
TF_ASS2	29-11-2022	EP2216255-002	8.0	5.8	2.2	Moderate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS3	29-11-2022	EP2216255-003	8.2	5.8	2.4	Moderate	9.1	0.406	253	< 0.02	<2	3.24	2020	<0.02	<10	7.98	7.98	<1	19	Neutralised
TF_ASS4	29-11-2022	EP2216255-004	8.0	5.8	2.2	Moderate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS5	29-11-2022	EP2216255-005	8.2	5.8	2.4	Moderate	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS6	29-11-2022	EP2216255-006	8.2	5.7	2.5	Moderate	8.8	0.917	572	<0.02	<2	4.04	2520	<0.02	<10	4.41	4.41	<1	43	Neutralised
TF_ASS7	23-01-2023	EP2300844-004	7.6	5.8	1.8	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS8	23-01-2023	EP2300844-005	7.3	5.8	1.5	Strong	8.8	0.592	369	<0.02	<2	3.42	2130	<0.02	<10	5.78	5.77	<1	28	Neutralised
TF_ASS9	23-01-2023	EP2300844-006	7.3	5.7	1.6	Strong	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS10	02-03-2023	EP2302658010	7.5	5.9	1.6	Extreme	8.8	0.272	170	<0.02	<2	2.21	1380	<0.02	<10	8.13	8.12	<1	13	Neutralised
TF_ASS11	02-03-2023	EP2302658011	7.5	6.4	1.1	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS12	02-03-2023	EP2302658012	7.4	6.5	0.9	Extreme	8.9	0.272	170	<0.02	<2	2.94	1830	<0.02	<10	10.81	10.76	<1	13	Neutralised
TF_ASS13	02-03-2023	EP2302658013	7.6	6	1.6	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS14	02-03-2023	EP2302658014	7.6	3.2	4.4	Extreme	6.4	1.25	778	<0.02	2	NT	NT	1.25	780	NC	NC	59	59	Residual acidity present
TF_ASS15	02-03-2023	EP2302658015	7.3	5.8	1.5	Strong	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS16	02-03-2023	EP2302658016	7.5	5.8	1.7	Strong	8.9	0.12	75	<0.02	<2	1.82	1140	<0.02	<10	15.17	15.20	<1	6	Neutralised
TF_ASS17	02-03-2023	EP2302658017	7.4	6.4	1	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS18	02-03-2023	EP2302658018	7.3	6.1	1.2	Extreme	8.3	0.497	310	<0.02	<2	1.11	692	<0.02	<10	2.23	2.23	<1	23	Neutralised
TF_ASS19	02-03-2023	EP2302658019	7.5	5.9	1.6	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS20	02-03-2023	EP2302658020	7.6	6	1.6	Strong	9.1	0.141	88	<0.02	<2	3.54	2200	<0.02	<10	25.11	25.00	<1	7	Neutralised
TF_ASS21	02-03-2023	EP2302658021	7.5	5.8	1.7	Strong	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	÷
TF_ASS22	02-03-2023	EP2302658022	7.6	5.1	2.5	Extreme	8.6	0.442	276	<0.02	<2	1.63	1020	<0.02	<10	3.69	3.70	<1	21	Neutralised
TF_ASS23	02-03-2023	EP2302658023	7.5	5.8	1.7	Extreme	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS24	02-03-2023	EP2302658024	7.6	6.4	1.2	Extreme	9.1	0.178	111	<0.02	<2	2.77	1730	<0.02	<10	15.56	15.59	<1	8	Neutralised
TF_ASS25	02-03-2023	EP2302658025	7.3	5.6	1.7	Strong	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS26	02-03-2023	EP2302658026	7.7	5.9	1.8	Strong	8.6	0.152	95	<0.02	<2	2.13	1330	<0.02	<10	14.01	14.00	<1	7	Neutralised
TF_ASS27	02-03-2023	EP2302658027	7.5	6	1.5	Strong	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	-
TF_ASS28	02-03-2023	EP2302658028	7.5	5.8	1.7	Strong	8.8	0.171	107	<0.02	<2	1.67	1040	<0.02	<10	7.07	7.06	<1	8	Neutralised

mbgl indicates metres below ground level

%5 = percentage sulfur
"---" = criteria have not been derived for these chemical constituents/compounds.

PASS = Potential Acid Sulfate Soil

NASS = Non Acid Sulfate Soil AASS = Actual Acid Sulfate Soil

ANC = Acid Neutralising Capacity

NT = Not tested

Font and Cell :

- Coloured cells indicate exceedence of relevant assessment criteria

- Bolded analytical data indicates detection above LOR

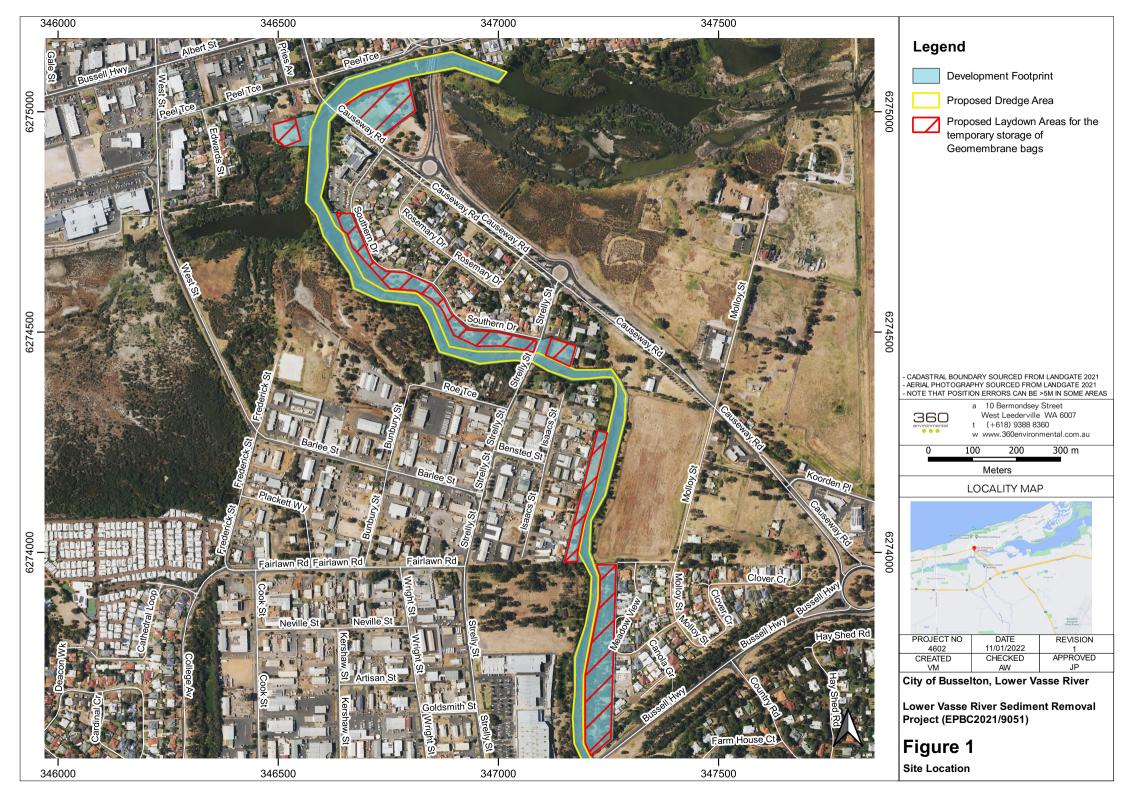
*Department of Water and Environmental Regulation (formerly Department of Environment Regulation), 2015. Treatment and Management of Soils and Water in Acid Sulfate Soil Landscapes. Western Australia.

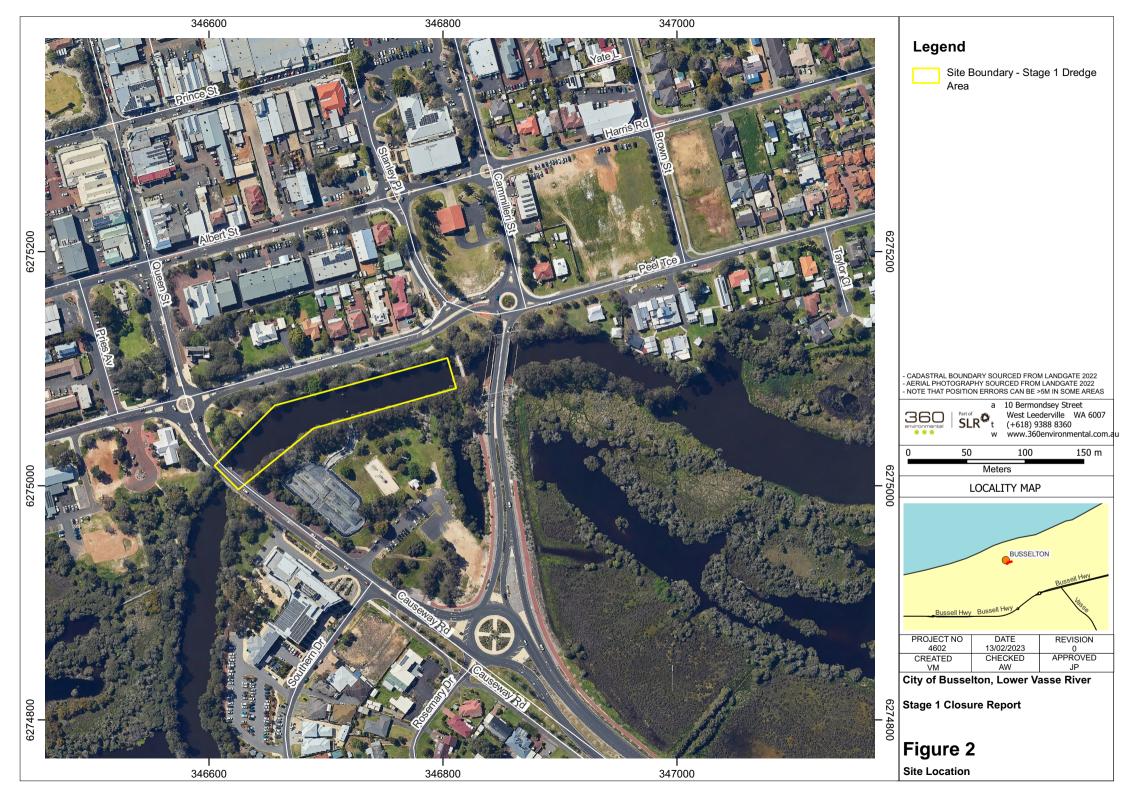
								Sample IE Sample Date	TF_WC1 29-11-2022	TF_WC2 29-11-2022	TF_WC3 29-11-2022	TF_WC4 29-11-2022	TF_WC5 29-11-2022	TF_WC6 29-11-2022	TF_WC7 23-01-2023	TF_WC8 23-01-2023	TF_WC9 23-01-2023	TF_WC10 02-03-2023	TF_WC11 02-03-2023	TF_WC12 02-03-2023	TF_WC13 02-03-2023	TF_WC14 02-03-2023	TF_WC15 02-03-2023	TF_WC16 02-03-2023	TF_WC17 02-03-2023	TF_WC18 02-03-2023
							Labo	ratory Reference No		EP2216258-002			EP2216258-005			EP2300844-002			EP2302658-002				EP2302658-006			EP2302658-009
Analyte	Units	Co	ntaminant Threshol	id (CT)	Uncontaminated Fill		Contaminant Level (CL)																		
Metals		CT1/2 Class I	CT3 Class III	CT4 Class IV	UC Fill	CL1Class MI	CL3 Class III	CL4 Class IV																		
Aluminium ^a	mg/kg	50.000	100.000	200.000		50,000	100,000	200,000	3960	4120	4450	2760	3120	1470	5650	5210	4600	5070	4150	6160	4470	5560	4080	3960	4460	4800
Arsenic	mg/kg	14	140	1,400	100	50,000	100,000	200,000	14	14	21	10	11	-5	18	12	7	<5	-5	37	7	29	8	7	9	9
Barium *	mg/kg	50.000	100.000	200,000	500	50,000	100,000	200,000	10	10	20	<10	10	<10	20	10	10	<10	10	20	10	20	10	10	10	10
Beryllium	mg/kg	2	20	200,000	4	50	500	2,000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron a	mg/kg	50.000	100.000	200.000		50.000	100,000	200.000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	mg/kg	0.4	4	40	1	50,000	100,000	200,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.8	0.2	<0.1	<0.1	<0.1	<0.1
Chromium (hexavalent)	mg/kg	10	100	1,000	1	50,000	100,000	200,000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cohalt a	_	50,000	100,000	200,000	50	500	5,000	20,000	<2	<2	2	<2	<2	<2	<2	<2	<2	<2	<2	3	<2	3	<2	<2	<2	<2
	mg/kg	50,000	100,000	200,000	50	100	1,000	4,000	9	10	13	5	8	-5	10	7	5	<5	-5	21	<5	18	- 45	<5	6	6
Copper *	mg/kg		100,000	200,000	300	100	1,000	4,000	12	13	13	8	11	5	10	10	6	<5	8.4	28.4	7.0	26.8	8.3	7.0	10.4	9.5
	mg/kg	50,000			300 500			4,000	12 44																	
Manganese *	mg/kg		100,000	200,000			100.000	200,000		49	48	23	37	16	59	61	52	42	48	76	49	64	54	50	60	59
Mercury	mg/kg	0.2		20	0.5	50,000	100,000	200,000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum Nickel	mg/kg	10	100	1,000	10	1,500	15,000	60,000	<2	<2	<2	<2	<2	-2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	mg/kg		20	400	1	75	750	3,000	<2	<2	<2	<2	<2	<2		<2	<2	<2	-2	5	<2	4	<2	<2 NT	<2	<2
Selenium	mg/kg	2		200		1,000	10,000	40,000	<1	<1	<1	<1	<1		<1			NT	<1	-	NT		<1			
Silver	mg/kg	20	200	2,000	20	3,000	30,000	120,000	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-2	<2	<2	<2	<2	<2	<2	<2
Vanadium ^a	mg/kg	50,000	100,000	200,000	130	180	1,800	7,200	8	8	8	<5	6	-5	11	11	10	11	9	13	11	11	10	10	11	13
Zinc *	mg/kg	50,000	100,000	200,000	120	50,000	100,000	200,000	28	29	37	17	25	12	34	25	14	6	9	67	14	66	15	15	19	16
Cyanide	mg/kg	7	70	700	5	2,500	25,000	100,000	<1	NT	<1	NT	<1	NT	<1	<1	<1	NT								
Fluoride	mg/kg	300	3,000	30,000	400	10,000	100,000	400,000	80	NT	150	NT	120	NT	150	120	110	70	NT	NT	100	NT	NT	80	NT	NT
Sulfate	mg/kg	•			2,500	****		***	NT	2100	NT	NT	3,040	NT	NT	1420	NT	NT								
Phenol	mg/kg	28.8	288	2,880	1	42,500	425,000	N/A	<0.5	NT	<0.5	NT	<0.5	NT	<0.5	<0.5	<0.5	NT								
Total PAH	mg/kg	N/A	N/A	N/A	300	100	1,000	4,000	<0.5	NT	0.7	NT	<0.5	NT	<0.5	<0.5	<0.5	<0.5	NT	NT	<0.5	NT	NT	<0.5	NT	NT
BTEX	mg/kg	0.2	2	20	0.5	18	180	720	<0.2	NT	<0.2	NT	<0.2	NT	<0.2	<0.2	<0.2	<0.2	NT	NT	<0.2	NT	NT	<0.2	NT	NT
Total OCP	mg/kg	N/A	N/A	N/A	3	50	50	50	<0.05	NT	<0.05	NT	<0.05	NT	<0.05	<0.05	< 0.05	NT								
Total PCB	mg/kg	N/A	N/A	N/A	1	50	50	50	<0.1	NT	<0.1	NT	<0.1	NT	<0.1	<0.1	<0.1	NT								
Hydrocarbons - Speciation																										
Aliphatic C16-C35	mg/kg	N/A	N/A	N/A	N/A	28,000	280,000	N/A	<100	NT	140	NT	<100	NT	NT	NT	NT	<100	NT	NT	<100	NT	NT	<100	NT	NT
Aliphatic > C35	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<100	NT	<100	NT	<100	NT	NT	NT	NT	<100	NT	NT	<100	NT	NT	<100	NT	NT
Aromatic C16-35	mg/kg	N/A	N/A	N/A	N/A	450	4,500	18,000	<90	NT	100	NT	<90	NT	NT	NT	NT	<90	NT	NT	<90	NT	NT	<90	NT	NT
Aromatic > C35	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<100	NT	<100	NT	<100	NT	NT	NT	NT	<100	NT	NT	<100	NT	NT	<100	NT	NT
Total Petroleum Hydrocarbons															-											
C6 - C9 Fraction	mg/kg	N/A	N/A	N/A	N/A	2,800	28,000	112,000	<10	NT	<10	NT	<10	NT	<10	<10	<10	NT								
C10 - C14 Fraction	mg/kg	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	<50	NT NT	<50	NT NT	<50	NT	<50	<50	<50	<50	NT NT	NT NT	<50	NT	NT NT	<50	NT	NT
C15 - C28 Fraction	mg/kg	1000	N/A					N/A	<100	***	230		<100	NT	<100	<100	<100	<100	NT		<100	NT	***	<100	NT	NT
C29 - C36 Fraction	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<100	NT	180	NT	<100	NT	<100	<100	<100	<100	NT	NT	<100	NT	NT	<100	NT	NT
C10 - C36 Fraction (sum)	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<50	NT	410	NT	<50	NT	<50	<50	<50	<50	NT	NT	<50	NT	NT	<50	NT	NT
Total Recoverable Hydrocarbons	mod:-	N/A	N/A	N/A	45	2.900	29,000	112,000	-10	MT	-10	MT	-10	MT	-10	-10	-10	MT	NT							
C6 - C10 Fraction	mg/kg		N/A	N/A	45	2,800	28,000	112,000	<10	NT	<10	NT	<10	NT	<10	<10	<10	NT FO	NT NT	NT	NT FO	NT	NT NT	NT FO	NT	
>C10 - C16 Fraction	mg/kg	N/A	N/A	N/A	110	N/A	N/A	N/A	<50	NT	<50	NT	<50	NT	<50	<50	<50	<50	NT	NT	<50	NT		<50	NT	NT
>C16 - C34 Fraction	mg/kg	N/A	N/A	N/A	300	N/A	N/A	N/A	<100	NT	380	NT	<100	NT	<100	<100	<100	<100	NT	NT	<100	NT	NT	<100	NT	NT
>C34 - C40 Fraction	mg/kg	N/A	N/A	N/A	2,800	N/A	N/A	N/A	<100	NT	<100	NT	<100	NT	<100	<100	<100	<100	NT	NT	<100	NT	NT	<100	NT	NT
>C10 - C40 Fraction (sum)	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<50	NT	380	NT	<50	NT	<50	<50	<50	<50	NT	NT	<50	NT	NT	<50	NT	NT
>C10 - C40 Fraction (sum-Nap)	mg/kg	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<50	NT	<50	NT	<50	NT	<50	<50	<50	<50	NT	NT	<50	NT	NT	<50	NT	NT

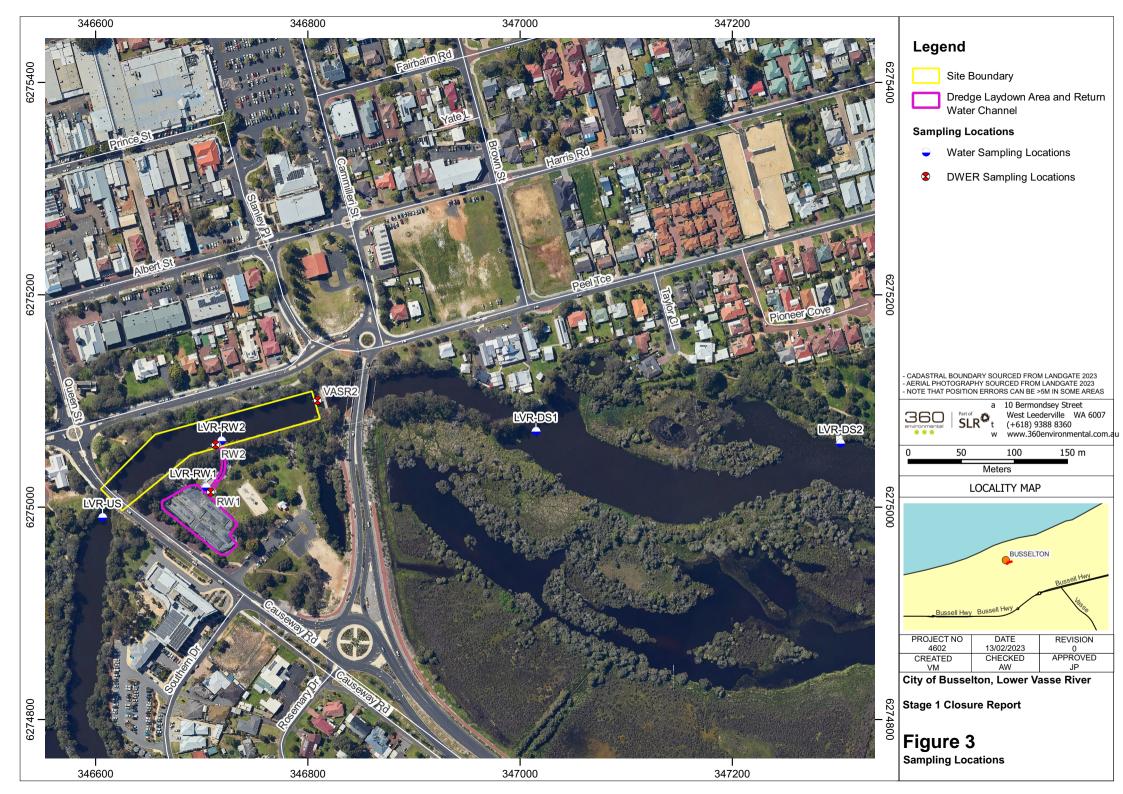
Note:

*C1 values derived as % by weight. If washe material contains significant quantities of these metals, preference should be given to recovery and recycling, rather than disposal.
CTT Class I, CTZ Class II, CTZ Class II and CT4 Class V are maximum values of total concontration for classification, without the requirements to assess behalfully.
Wassle limits are in accordance with the Department of Environment Regulation (IEER) LandIII Wassle Classification and Wassle Definitions 1999, (as amended 2018).
Acruspms:
CT - Contaminant Thresholds
thely a metals belowing ground level
thely a metals belowing ground level
thely a metals below ground level
thely a metals below ground level
the ground of the developed for this sandyle
first and code.
Calculated code is folded exceedance of relocant assessment criteria
Solided readylycan date indicates desiction above LDE

						W 11/44	W 1800	W 1800	77 110	77 1100	VC 11101	W. HAN	W 11100	W. 1100	W 111044	VF 111044	W 10040	W. 111044	W. 1104	W. 11104	W. 11104	WE 1110.00	
					Sample ID Sample Date	TF_WC1 29-11-2022	TF_WC2 29-11-2022	TF_WC3 29-11-2022	TF_WC4 29-11-2022	TF_WC5 29-11-2022	TF_WC6 29-11-2022	TF_WC7 23-01-2023	TF_WC8 23-01-2023	TF_WC9 23-01-2023	TF_WC10 02-03-2023	TF_WC11 02-03-2023	TF_WC12 02-03-2023	TF_WC13 02-03-2023	TF_WC14 02-03-2023	TF_WC15 02-03-2023	TF_WC16 02-03-2023	TF_WC17 02-03-2023	TF_WC18 02-03-2023
					Analysis Type	Leachale	Leachale	Leachale	Leachate	Leachate	Leachale	Leachale	Leachale	Leachale	Leachate	Leachale	Leachale	Leachate	Leachate	Learhate	Leachate	Leachate	Leachate
				Laborat	tory Reference No.	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005	EP2216258-006	EP2300844-001	EP2300844-002	EP2300844-003	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009
		L	eachable Conce		,																		
Analytes	Units	ASLP1 Class III	ASLP1 Class I	ASLP1 Class N	/ UC Fill																		
Metals																							
Arsenic	mg/L	0.5	5	50	0.01	0.0031	0.0033	0.0034	0.0024	0.0028	0.0025	0.0028	0.0016	0.0039	0.0043	0.02	0.03	0.0028	0.02	0.01	0.0051	0.02	0.01
Cadmium	mglL	0.1	1	10	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.005	<0.005	<0.0001	<0.005	<0.005	<0.0001	<0.005	<0.005
Chromium (hexavalent)	mgt	0.5	5	50	0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.001	< 0.01	<0.01	<0.01	<0.001	<0.01
Cobalt ^a	mglL	-	-		0.001	0.002	0.002	0.002	0.0017	0.0018	0.0016	0.0016	0.0011	0.0025	0.0019	<0.01	<0.01	0.0017	<0.01	<0.01	0.0019	<0.01	<0.01
Copper ^a	mglL		-	-	0.002	0.0077	0.0084	0.0094	0.0074	0.0084	0.0074	0.0087	0.0056	0.0112	0.007	<0.01	<0.01	0.0062	<0.01	<0.01	0.006	<0.01	<0.01
Lead	mglL	0.1	1	10	0.003	0.0175	0.018	0.0171	0.0149	0.0161	0.0146	0.0153	0.0067	0.0189	0.014	0.02	0.01	0.0115	<0.01	<0.01	0.0124	<0.01	<0.01
Manganese ^a	mglL	-	-		0.5	0.0316	0.037	0.0194	0.0228	0.0196	0.0193	0.0266	0.0307	0.0903	0.117	0.12	0.03	0.0684	0.08	0.06	0.162	0.06	0.02
Mercury	mg/L	0.01	0.1	1	0.00005	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004	<0.0001	<0.0001	<0.00004	<0.00004	<0.0001	<0.00004	<0.0001	<0.0001
Molybdenum	mg/L	0.5	5	50	0.05	0.0149	0.0141	0.0192	0.0104	0.0159	0.00113	0.0165	0.0118	0.0084	0.0043	0.01	0.03	0.0084	<0.01	<0.01	0.0033	0.01	0.02
Nickel	mg/L	0.2	2	20	0.01	0.003	0.0025	0.0024	< 0.002	0.002	0.002	<0.002	<0.002	0.0027	0.0036	<0.01	<0.01	0.0022	< 0.01	<0.01	0.0047	<0.01	<0.01
Selenium	mglL	0.5	5	50	0.005	0.0006	0.0006	0.0008	0.0006	0.0007	0.0006	0.0005	0.0003	0.0005	0.0004	<0.01	<0.01	0.0004	< 0.01	0.1	0.003	0.03	0.02
Silver	mglL	1	10	100	0.00005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.01	<0.01	<0.0002	<0.01	<0.01	<0.0002	<0.01	<0.01
Zinc ^a	mglL	-	-		0.01	0.034	0.037	0.04	0.032	0.034	0.038	0.046	0.024	0.064	0.043	0.05	0.03	0.036	0.03	0.02	0.039	0.03	0.01
Mutrients																							
Total Nitrogen as N	μglL		-		2000	NT	3300	NT	NT	3000	NT	NT	NT	2700	NT								
Total Phosphorous as P	μglL		-	-	200	NT	430	NT	NT	260	NT	NT	NT	320	NT								
Ammonia as N	μglL		-	-	350	NT	120	NT	NT	70	NT	NT	NT	480	NT								
Organochlorine Pesticides																							
Aldrin	μg/L		-	-	0.001	NT	<0.001	NT	NT	<0.001	NT	NT	NT	<0.001	NT								
Dieldrin	μglL		-	-	0.01	NT	<0.002	NT	NT	<0.002	NT	NT	NT	<0.002	NT								
Sum of DDE, DDD, DDT	μglL	-	-	-	0.006	NT	<0.002	NT	NT	<0.002	NT	NT	NT	<0.002	NT								
Fluoride					,								,		,		,						
Fluoride	μglL		-	-	120	NT	200	NT	NT	300	NT	NT	NT	200	NT								


CL values derived as % by weight.


Cut class charted as 1 by saight
Class Class Class Class And CLA Class M or the concentration behalf the value class class Class Class 1 + 10 class Class M - 10 a Class M - 1


360 Environmental Pty Ltd

Figures

Appendices

Appendix A Lab Certificates

CERTIFICATE OF ANALYSIS

Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Roisin McCallum

Site : --

Quote number : EP/219/22 V3

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 6

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 29-Apr-2022 11:30

Date Analysis Commenced : 29-Apr-2022

Issue Date : 04-May-2022 21:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, WA
Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA
Daniel Fisher Inorganics Analyst Perth Inorganics, Wangara, WA

Page : 2 of 6
Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 6
Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplin	g date / time	28-Apr-2022 08:30	28-Apr-2022 09:00	28-Apr-2022 09:30	28-Apr-2022 10:00	28-Apr-2022 10:30
Compound	CAS Number	LOR	Unit	EP2205048-001	EP2205048-002	EP2205048-003	EP2205048-004	EP2205048-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.14	8.46	8.71	8.77	8.72
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	15	34	46	56
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	363	231	198	200	207
Total Alkalinity as CaCO3		1	mg/L	363	246	232	245	263
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	6	<1	<1	<1	<1
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.02	0.03	0.02	0.02
Arsenic	7440-38-2	0.001	mg/L	0.005	0.003	0.003	0.002	0.003
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.07	0.42
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.23	0.22	0.16	0.17	0.22
Arsenic	7440-38-2	0.001	mg/L	0.006	0.003	0.004	0.003	0.004
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	0.008	<0.005	<0.005	0.007
Iron	7439-89-6	0.05	mg/L	0.51	0.41	0.31	0.47	1.32
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	5810	680	40	30	100

Page : 4 of 6
Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	28-Apr-2022 08:30	28-Apr-2022 09:00	28-Apr-2022 09:30	28-Apr-2022 10:00	28-Apr-2022 10:30
Compound	CAS Number	LOR	Unit	EP2205048-001	EP2205048-002	EP2205048-003	EP2205048-004	EP2205048-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	5710	620	30	30	80
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	<10	<10
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	10	μg/L	<10	<10	<10	<10	10
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	yser						
Nitrite + Nitrate as N		10	μg/L	<10	<10	<10	<10	10
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	8900	4600	4700	3800	5500
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	8900	4600	4700	3800	5500
EK067G: Total Phosphorus as P by Di	screte Analyser							
Total Phosphorus as P		10	μg/L	1270	570	500	450	680
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	1170	30	<10	<10	120
EP008: Chlorophyll a, b,c and Pheoph	ytin a							
Chlorophyll a (Monochromatic)		1	μg/L			337	156	78

Page : 5 of 6
Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW2-1	 	
		Sampli	ng date / time	27-Apr-2022 15:00	 	
Compound	CAS Number	LOR	Unit	EP2205048-006	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	8.59	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	22	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	206	 	
Total Alkalinity as CaCO3		1	mg/L	228	 	
ED038A: Acidity						
Acidity as CaCO3		1	mg/L	<1	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	0.002	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.51	 	
Arsenic	7440-38-2	0.001	mg/L	0.003	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.019	 	
Iron	7439-89-6	0.05	mg/L	0.85	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.00004	mg/L	<0.00004	 	
EG035T: Total Mercury by FIMS						
Mercury	7439-97-6	0.00004	mg/L	<0.00004	 	
EK055G: Ammonia as N by Discrete An	alyser					
Ammonia as N	7664-41-7	10	μg/L	40	 	
- IIIII do II	1004-41-1		MA, ₽	70		

Page : 6 of 6 Work Order : EP2205048

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW2-1	 	
		Sampl	ing date / time	27-Apr-2022 15:00	 	
Compound	CAS Number	LOR	Unit	EP2205048-006	 	
				Result	 	
EK055G-NH4: Ammonium as N by DA	\					
Ammonium as N	14798-03-9_N	10	ug/L	30	 	
EK057G: Nitrite as N by Discrete Ana	alyser					
Nitrite as N	14797-65-0	10	μg/L	<10	 	
EK058G: Nitrate as N by Discrete An	alyser					
Nitrate as N	14797-55-8	10	μg/L	<10	 	
EK059G: Nitrite plus Nitrate as N (NC	Ox) by Discrete Anal	yser				
Nitrite + Nitrate as N		10	μg/L	<10	 	
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser					
Total Kjeldahl Nitrogen as N		100	μg/L	6500	 	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser				
^ Total Nitrogen as N		100	μg/L	6500	 	
EK067G: Total Phosphorus as P by D	Discrete Analyser					
Total Phosphorus as P		10	μg/L	770	 	
EK071G: Reactive Phosphorus as P l	by discrete analyser					
Reactive Phosphorus as P	14265-44-2	10	μg/L	<10	 	

Work Order : EP2205217

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : PO BOX 14

WEST PERTH WA, AUSTRALIA 6872

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Emily Evans (Ottelia Ecology)

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301
Date Samples Received : 03-May-2022 14:00

Date Analysis Commenced : 03-May-2022

Issue Date : 10-May-2022 15:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA

Page : 2 of 4
Work Order : EP2205217

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EP2205217

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplir	ng date / time	02-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205217-001	EP2205217-002	EP2205217-003	EP2205217-004	EP2205217-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.15	8.68	8.45	8.70	8.31
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	33	15	40	1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	399	212	214	228	296
Total Alkalinity as CaCO3		1	mg/L	399	245	229	267	298
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	20	<1	<1	<1	4
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	0.02	0.01	0.01
Arsenic	7440-38-2	0.001	mg/L	0.005	0.002	0.003	0.002	0.003
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.07	0.66
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.14	0.12	0.15	0.11	0.20
Arsenic	7440-38-2	0.001	mg/L	0.005	0.002	0.003	0.002	0.003
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.002
Lead	7439-92-1	0.001	mg/L	0.001	<0.001	<0.001	<0.001	0.001
Zinc	7440-66-6	0.005	mg/L	0.007	<0.005	<0.005	<0.005	0.006
Iron	7439-89-6	0.05	mg/L	0.14	0.23	0.32	0.35	2.27
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	7260	10	<10	<10	410

Page : 4 of 4
Work Order : EP2205217

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Sampli	ng date / time	02-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205217-001	EP2205217-002	EP2205217-003	EP2205217-004	EP2205217-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	6990	<10	<10	<10	380
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	<10	<10
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	10	μg/L	<10	<10	<10	<10	<10
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Anal	vser						
Nitrite + Nitrate as N		10	μg/L	<10	<10	<10	<10	<10
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	9600	3600	4800	3700	5900
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	9600	3600	4800	3700	5900
EK067G: Total Phosphorus as P by Dis	screte Analyser							
Total Phosphorus as P		10	μg/L	970	350	480	390	680
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	900	<10	<10	10	150
EP008: Chlorophyll a, b,c and Pheophy	vtin a							
Chlorophyll a (Monochromatic)		1	μg/L			300	132	19

Work Order : EP2205362

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Emily Evans

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 05-May-2022 12:05

Date Analysis Commenced : 05-May-2022

Issue Date : 09-May-2022 20:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA

Page : 2 of 4
Work Order : EP2205362

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EP2205362

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplir	ng date / time	04-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205362-001	EP2205362-002	EP2205362-003	EP2205362-004	EP2205362-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.20	8.33	8.55	8.55	8.27
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	4	20	27	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	377	279	203	257	309
Total Alkalinity as CaCO3		1	mg/L	377	284	224	284	309
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	5	<1	<1	<1	2
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.02	0.01	<0.01
Arsenic	7440-38-2	0.001	mg/L	0.006	0.003	0.002	0.002	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.12	0.64
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.07	0.11	0.12	0.61	1.29
Arsenic	7440-38-2	0.001	mg/L	0.007	0.004	0.004	0.003	0.004
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	0.009	<0.001	<0.001	<0.001	0.002
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	0.001	0.002
Nickel	7440-02-0	0.001	mg/L	0.011	<0.001	<0.001	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.002	0.004
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	0.010	0.022
Iron	7439-89-6	0.05	mg/L	0.15	0.13	0.22	1.37	4.35
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	7980	2370	30	30	510

Page : 4 of 4
Work Order : EP2205362

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	04-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205362-001	EP2205362-002	EP2205362-003	EP2205362-004	EP2205362-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA	\							
Ammonium as N	14798-03-9_N	10	ug/L	7890	2180	30	30	440
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	<10	<10
EK058G: Nitrate as N by Discrete An	alyser							
Nitrate as N	14797-55-8	10	μg/L	<10	<10	<10	<10	<10
EK059G: Nitrite plus Nitrate as N (NC	Dx) by Discrete Ana	vser						
Nitrite + Nitrate as N		10	μg/L	<10	<10	<10	<10	<10
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	10900	6200	4500	5100	8000
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	10900	6200	4500	5100	8000
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		10	μg/L	1590	670	390	630	1010
EK071G: Reactive Phosphorus as P l	oy discrete ana <u>lyser</u>							
Reactive Phosphorus as P	14265-44-2	10	μg/L	1440	320	<10	90	150
EP008: Chlorophyll a, b,c and Pheopl	hytin a							
Chlorophyll a (Monochromatic)		1	μg/L			394	145	160

Work Order : EP2205637

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Client

Sampler : Emily Evans

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 11-May-2022 11:35

Date Analysis Commenced : 11-May-2022

Issue Date : 16-May-2022 17:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, WA
Efua Wilson Metals Chemist Perth Inorganics, Wangara, WA

Page : 2 of 4
Work Order : EP2205637

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EP2205637

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplin	g date / time	10-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205637-001	EP2205637-002	EP2205637-003	EP2205637-004	EP2205637-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.15	8.27	8.77	8.64	8.22
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	37	39	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	330	284	178	247	312
Total Alkalinity as CaCO3		1	mg/L	330	284	215	286	312
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	8	<1	<1	<1	2
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.01	0.05	<0.01
Arsenic	7440-38-2	0.001	mg/L	0.004	0.003	0.002	0.002	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.16	0.50
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.39	0.18	0.08	0.11	0.17
Arsenic	7440-38-2	0.001	mg/L	0.005	0.003	0.004	0.003	0.003
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	0.002	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.002
Lead	7439-92-1	0.001	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	0.56	0.19	0.13	0.46	3.66
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EK055G: Ammonia as N by Discrete A								
Ammonia as N	7664-41-7	10	μg/L	4340	1850	30	20	50

Page : 4 of 4
Work Order : EP2205637

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Sampli	ng date / time	10-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205637-001	EP2205637-002	EP2205637-003	EP2205637-004	EP2205637-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	4270	1740	30	20	50
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	<10	<10
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	10	μg/L	10	10	<10	<10	<10
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Anal	yser						
Nitrite + Nitrate as N		10	μg/L	10	10	<10	<10	<10
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	11000	5400	3900	4600	7000
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	11000	5400	3900	4600	7000
EK067G: Total Phosphorus as P by Dis	screte Analyser							
Total Phosphorus as P		10	μg/L	810	430	320	520	700
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	600	160	<10	<10	40
EP008: Chlorophyll a, b,c and Pheophy	ytin a							
Chlorophyll a (Monochromatic)		1	μg/L			181	190	135

Work Order : EP2205794

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Robyn Paice

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 13-May-2022 11:40

Date Analysis Commenced : 13-May-2022

Issue Date : 19-May-2022 17:06

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang KeInorganics SupervisorPerth Inorganics, Wangara, WAChris LemaitreLaboratory Manager (Perth)Perth Inorganics, Wangara, WAEfua WilsonMetals ChemistPerth Inorganics, Wangara, WA

Page : 2 of 4
Work Order : EP2205794

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK067G/EK071G: It is recognised that Total Phosphorus is less than Reactive Phosphorus for sample EP2205794-001. However, the difference is within experimental variation of the methods.
- EG020: It is recognised that total Ni concentration is less than dissolved for sample EP2205794-005. However, the difference is within experimental variation of the methods

Page : 3 of 4
Work Order : EP2205794

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	12-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205794-001	EP2205794-002	EP2205794-003	EP2205794-004	EP2205794-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.75	7.95	8.44	8.36	7.86
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	11	6	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	354	262	204	249	273
Total Alkalinity as CaCO3		1	mg/L	354	262	215	254	273
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	12	5	<1	<1	8
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	0.01	0.03	<0.01
Arsenic	7440-38-2	0.001	mg/L	0.004	0.002	0.002	0.002	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	0.19
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.28	0.17	0.11	0.16	0.07
Arsenic	7440-38-2	0.001	mg/L	0.004	0.003	0.002	0.002	0.002
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	0.002	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	0.010	<0.005	0.011	<0.005
Iron	7439-89-6	0.05	mg/L	0.31	0.21	0.23	0.43	1.57
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.0004	<0.00004	<0.00004
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	7210	2770	<10	<10	20

Page : 4 of 4
Work Order : EP2205794

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Sampli	ng date / time	12-May-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2205794-001	EP2205794-002	EP2205794-003	EP2205794-004	EP2205794-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	7110	2690	<10	<10	20
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	<10	<10
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N	14797-55-8	10	μg/L	10	20	<10	<10	10
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	vser						
Nitrite + Nitrate as N		10	μg/L	10	20	<10	<10	10
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	9800	5300	3700	4200	6700
EK062G: Total Nitrogen as N (TKN + N	IOx) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	9800	5300	3700	4200	6700
EK067G: Total Phosphorus as P by Di	iscrete Analyser							
Total Phosphorus as P		10	μg/L	1310	440	290	420	750
EK071G: Reactive Phosphorus as P b	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	1320	370	<10	<10	80
EP008: Chlorophyll a, b,c and Pheoph	vtin a							
Chlorophyll a (Monochromatic)		1	μg/L			242	156	121

Work Order : EP2206183

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : PO BOX 14

WEST PERTH WA. AUSTRALIA 6872

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number

Sampler · R. PAICE

Site

Quote number : EP/219/22 V3

No. of samples received : 4 No. of samples analysed : 4 Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301 Date Samples Received : 23-May-2022 11:30

Date Analysis Commenced : 23-May-2022

Issue Date : 27-May-2022 15:28

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia Efua Wilson Metals Chemist Perth Inorganics, Wangara, Western Australia

Page : 2 of 4
Work Order : EP2206183

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG035F-LL: Positive Hg for EP2206183-004 confirmed by re-analysis.

Page : 3 of 4
Work Order : EP2206183

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	
		Samplin	ng date / time	19-May-2022 13:30	19-May-2022 13:41	19-May-2022 09:24	19-May-2022 09:48	
Compound	CAS Number	LOR	Unit	EP2206183-001	EP2206183-002	EP2206183-003	EP2206183-004	
				Result	Result	Result	Result	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.93	8.28	8.07	8.08	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	239	220	194	227	
Total Alkalinity as CaCO3		1	mg/L	239	220	194	227	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	13	3	5	6	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	<0.01	<0.01	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.09	
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.06	0.07	0.10	0.08	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	0.006	<0.005	<0.005	0.006	
Iron	7439-89-6	0.05	mg/L	0.13	0.14	0.33	0.40	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	0.00027	
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EK055G: Ammonia as N by Discrete Ar	nalyser							
Ammonia as N	7664-41-7	10	μg/L	2680	1020	100	430	

Page : 4 of 4
Work Order : EP2206183

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	
		Samplir	ng date / time	19-May-2022 13:30	19-May-2022 13:41	19-May-2022 09:24	19-May-2022 09:48	
Compound	CAS Number	LOR	Unit	EP2206183-001	EP2206183-002	EP2206183-003	EP2206183-004	
				Result	Result	Result	Result	
EK055G-NH4: Ammonium as N by D	A							
Ammonium as N	14798-03-9_N	10	ug/L	2640	980	100	410	
EK057G: Nitrite as N by Discrete An	alyser							
Nitrite as N	14797-65-0	10	μg/L	10	10	<10	10	
EK058G: Nitrate as N by Discrete An	nalyser							
Nitrate as N	14797-55-8	10	μg/L	30	50	10	30	
EK059G: Nitrite plus Nitrate as N (No	Ox) by Discrete Anal	vser						
Nitrite + Nitrate as N		10	μg/L	40	60	10	40	
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	7000	3200	4300	4000	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	7000	3300	4300	4000	
EK067G: Total Phosphorus as P by I	Discrete Analyser							
Total Phosphorus as P		10	μg/L	550	140	400	390	
EK071G: Reactive Phosphorus as P	by discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	340	20	<10	60	
EP008: Chlorophyll a, b,c and Pheop	hytin a							
Chlorophyll a (Monochromatic)		1	μg/L			180	18	

Work Order : EP2206285

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Robyn Paige

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 25-May-2022 12:30

Date Analysis Commenced : 25-May-2022

Issue Date : 01-Jun-2022 17:48

ed by ALS. This document shall

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, Western Australia
Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia

Page : 2 of 4
Work Order : EP2206285

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG035F-LL: Positive dissolved mercury for EP2206285-004 has been confirmed by re-preparation and re-analysis (0.00012 mg/L and 0.00013 mg/L). Please scrutinize result accordingly.
- EK055G: Ammonia, EK061G: TKN and EK067G: Total Phosphorus results for sample #1 and 5 have been confirmed by re-preparation and re-analysis.
- EK071: Reactive Phosphorus result for sample #5 has been confirmed by re-preparation and re-analysis.

Page : 3 of 4
Work Order : EP2206285

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-RW1b
		Sampli	ng date / time	24-May-2022 11:18	24-May-2022 11:42	24-May-2022 12:11	24-May-2022 12:29	24-May-2022 11:26
Compound	CAS Number	LOR	Unit	EP2206285-001	EP2206285-002	EP2206285-003	EP2206285-004	EP2206285-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.01	8.26	8.43	8.17	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	8	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	296	225	178	216	
Total Alkalinity as CaCO3		1	mg/L	296	225	186	216	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	10	2	<1	4	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	<0.05	
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.42	0.12	0.04	0.05	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	0.019	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	0.012	
Iron	7439-89-6	0.05	mg/L	0.62	0.14	0.24	0.46	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	0.00013	
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	5510	1380	20	1000	4560

Page : 4 of 4
Work Order : EP2206285

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-RW1b
		Sampli	ng date / time	24-May-2022 11:18	24-May-2022 11:42	24-May-2022 12:11	24-May-2022 12:29	24-May-2022 11:26
Compound	CAS Number	LOR	Unit	EP2206285-001	EP2206285-002	EP2206285-003	EP2206285-004	EP2206285-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	5440	1330	20	980	4480
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	10	μg/L	<10	20	<10	20	<10
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	10	μg/L	40	60	10	70	40
EK059G: Nitrite plus Nitrate as N (NO)	x) by Discrete Anal	yser						
Nitrite + Nitrate as N		10	μg/L	40	80	10	90	40
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	10600	3800	2700	2800	9400
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	10600	3900	2700	2900	9400
EK067G: Total Phosphorus as P by Dis	screte Analyser							
Total Phosphorus as P		10	μg/L	580	140	220	150	440
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	490	90	<10	50	400
EP008: Chlorophyll a, b,c and Pheophy	vtin a							
Chlorophyll a (Monochromatic)		1	μg/L			116	8	

Work Order : EP2206711

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Emily Evans

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 02-Jun-2022 11:20

Date Analysis Commenced : 02-Jun-2022

Issue Date : 09-Jun-2022 18:03

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, Western Australia Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia

Page : 2 of 4
Work Order : EP2206711

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EP2206711

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplir	ng date / time	01-Jun-2022 13:00	01-Jun-2022 12:30	01-Jun-2022 10:50	01-Jun-2022 12:00	01-Jun-2022 11:30
Compound	CAS Number	LOR	Unit	EP2206711-001	EP2206711-002	EP2206711-003	EP2206711-004	EP2206711-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.44	8.15	8.17	8.04	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	19	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	319	273	200	260	
Total Alkalinity as CaCO3		1	mg/L	338	273	200	260	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	6	2	8	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Arsenic	7440-38-2	0.001	mg/L	0.005	0.003	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.30	
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.13	0.07	0.10	0.05	
Arsenic	7440-38-2	0.001	mg/L	0.005	0.003	0.002	0.002	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	0.07	0.08	0.32	0.86	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	4610	2570	220	2790	3660

Page : 4 of 4
Work Order : EP2206711

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	01-Jun-2022 13:00	01-Jun-2022 12:30	01-Jun-2022 10:50	01-Jun-2022 12:00	01-Jun-2022 11:30
Compound	CAS Number	LOR	Unit	EP2206711-001	EP2206711-002	EP2206711-003	EP2206711-004	EP2206711-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA								
Ammonium as N	14798-03-9_N	10	ug/L	4110	2510	210	2770	
EK057G: Nitrite as N by Discrete Anal	yser							
Nitrite as N	14797-65-0	10	μg/L	10	50	10	10	<10
EK058G: Nitrate as N by Discrete Ana	lyser							
Nitrate as N	14797-55-8	10	μg/L	20	100	10	20	<10
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	vser						
Nitrite + Nitrate as N		10	μg/L	30	150	20	30	<10
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	6500	3900	3100	6400	6600
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	6500	4000	3100	6400	6600
EK067G: Total Phosphorus as P by Di	screte Analyser							
Total Phosphorus as P		10	μg/L	670	290	230	470	260
EK071G: Reactive Phosphorus as P by	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	620	270	<10	140	60
EP008: Chlorophyll a, b,c and Pheoph	vtin a							
Chlorophyll a (Monochromatic)		1	μg/L			134	<1	

Work Order : EP2206770

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Emily Evans

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 3

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 03-Jun-2022 12:00

Date Analysis Commenced : 03-Jun-2022

Issue Date : 09-Jun-2022 15:32

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia

Page : 2 of 3 Work Order : EP2206770

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	 	
	Sampli	ing date / time	02-Jun-2022 14:35	02-Jun-2022 14:15	 		
Compound	CAS Number	LOR	Unit	EP2206770-001	EP2206770-002	 	
				Result	Result	 	
EK055G: Ammonia as N by Discrete	e Analyser						
Ammonia as N	7664-41-7	10	μg/L	3930	2800	 	
EK055G-NH4: Ammonium as N by I	DA						
Ammonium as N	14798-03-9_N	10	ug/L	3880	2740	 	
EK057G: Nitrite as N by Discrete A	nalyser						
Nitrite as N	14797-65-0	10	μg/L	50	50	 	
EK058G: Nitrate as N by Discrete A	Analyser						
Nitrate as N	14797-55-8	10	μg/L	70	90	 	
EK059G: Nitrite plus Nitrate as N (N	NOx) by Discrete Anal	yser					
Nitrite + Nitrate as N		10	μg/L	120	140	 	
EK061G: Total Kjeldahl Nitrogen By	y Discrete Analyser						
Total Kjeldahl Nitrogen as N		100	μg/L	8900	5400	 	
EK062G: Total Nitrogen as N (TKN -	+ NOx) by Discrete An	alyser					
^ Total Nitrogen as N		100	μg/L	9000	5500	 	
EK067G: Total Phosphorus as P by	Discrete Analyser						
Total Phosphorus as P		10	μg/L	580	360	 	
EK071G: Reactive Phosphorus as F	by discrete analyser						
Reactive Phosphorus as P	14265-44-2	10	μg/L	540	300	 	

Page : 3 of 3
Work Order : EP2206770

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Work Order : **EP2206939**

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Emily Evans

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 5

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 08-Jun-2022 12:10

Date Analysis Commenced : 08-Jun-2022

Issue Date : 14-Jun-2022 20:12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia Efua Wilson Metals Chemist Perth Inorganics, Wangara, Western Australia Perth Inorganics, Wangara, Western Australia

Page : 2 of 5 Work Order : EP2206939

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 5
Work Order : EP2206939

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2 (a)	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	07-Jun-2022 14:50	07-Jun-2022 14:30	07-Jun-2022 10:20	07-Jun-2022 11:00	07-Jun-2022 10:50
Compound	CAS Number	LOR	Unit	EP2206939-001	EP2206939-002	EP2206939-003	EP2206939-004	EP2206939-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.04	8.18	8.21	7.88	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	308	268	211	274	
Total Alkalinity as CaCO3		1	mg/L	308	268	211	274	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	2	<1	<1	4	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	0.002	0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.18	
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.11	0.07	0.06	0.06	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.002	0.002	0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	0.12	0.16	0.25	0.84	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	10	μg/L	3690	1580	290	3530	4230

Page : 4 of 5
Work Order : EP2206939

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2 (a)	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	07-Jun-2022 14:50	07-Jun-2022 14:30	07-Jun-2022 10:20	07-Jun-2022 11:00	07-Jun-2022 10:50
Compound	CAS Number	LOR	Unit	EP2206939-001	EP2206939-002	EP2206939-003	EP2206939-004	EP2206939-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by D	A							
Ammonium as N	14798-03-9_N	10	ug/L	3520	1490	280	3500	4200
EK057G: Nitrite as N by Discrete An	alyser							
Nitrite as N	14797-65-0	10	μg/L	40	70	20	10	<10
EK058G: Nitrate as N by Discrete An	nalyser							
Nitrate as N	14797-55-8	10	μg/L	40	100	20	20	<10
EK059G: Nitrite plus Nitrate as N (No	Ox) by Discrete Anal	vser						
Nitrite + Nitrate as N		10	μg/L	80	170	40	30	<10
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	6500	3200	3100	5600	6400
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alvser						
^ Total Nitrogen as N		100	μg/L	6600	3400	3100	5600	6400
EK067G: Total Phosphorus as P by [Discrete Analyser							
Total Phosphorus as P		10	μg/L	630	260	240	320	160
EK071G: Reactive Phosphorus as P	by discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	540	190	<10	110	40
EP008: Chlorophyll a, b,c and Pheop	hytin a							
Chlorophyll a (Monochromatic)		1	μg/L			174	<1	

Page : 5 of 5
Work Order : EP2206939

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW2 (b)	 	
		Sampli	ng date / time	07-Jun-2022 10:00	 	
Compound	CAS Number	LOR	Unit	EP2206939-006	 	
				Result	 	
EK055G: Ammonia as N by Discrete	Analyser					
Ammonia as N	7664-41-7	10	μg/L	1410	 	
EK055G-NH4: Ammonium as N by DA	4					
Ammonium as N	14798-03-9_N	10	ug/L	1370	 	
EK057G: Nitrite as N by Discrete Ana	alyser					
Nitrite as N	14797-65-0	10	μg/L	70	 	
EK058G: Nitrate as N by Discrete An	alyser					
Nitrate as N	14797-55-8	10	μg/L	120	 	
EK059G: Nitrite plus Nitrate as N (NC	Ox) by Discrete Ana	lyser				
Nitrite + Nitrate as N		10	μg/L	190	 	
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser					
Total Kjeldahl Nitrogen as N		100	μg/L	3300	 	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete Ar	alyser				
^ Total Nitrogen as N		100	μg/L	3500	 	
EK067G: Total Phosphorus as P by D	Discrete Analyser					
Total Phosphorus as P		10	μg/L	280	 	
EK071G: Reactive Phosphorus as P l	by discrete analyser					
Reactive Phosphorus as P	14265-44-2	10	μg/L	140	 	

CERTIFICATE OF ANALYSIS

Work Order : **EP2207477**

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Client

Sampler : ROBYN PAICE

Site : ---

Quote number : EP/219/22 V3

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 4

Laboratory : Environmental Division Perth

Contact : Natalie Duncan

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 17-Jun-2022 11:15

Date Analysis Commenced : 17-Jun-2022

Issue Date : 22-Jun-2022 21:12

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, Western Australia Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia

Page : 2 of 4
Work Order : EP2207477

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG020: It is recognised that total As and Cu concentrations are less than dissolved for samples EP2207477 -001 to -004. However, the difference is within experimental variation of the methods.

Page : 3 of 4
Work Order : EP2207477

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Samplii	ng date / time	16-Jun-2022 12:08	16-Jun-2022 11:49	16-Jun-2022 11:21	16-Jun-2022 10:53	16-Jun-2022 10:25
Compound	CAS Number	LOR	Unit	EP2207477-001	EP2207477-002	EP2207477-003	EP2207477-004	EP2207477-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.35	8.63	8.19	8.19	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	6	14	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	281	138	143	184	
Total Alkalinity as CaCO3		1	mg/L	287	152	143	184	
ED038A: Acidity								
Acidity as CaCO3		1	mg/L	<1	<1	<1	<1	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.02	<0.01	<0.01	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.001	0.001	0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.002	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
Iron	7439-89-6	0.05	mg/L	<0.05	0.20	0.26	0.19	
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.10	0.04	0.04	0.08	
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.006	<0.005	
Iron	7439-89-6	0.05	mg/L	0.12	0.50	0.70	0.66	
G035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EG035T: Total Mercury by FIMS								
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	
EK055G: Ammonia as N by Discrete A	nalyser							
Ammonia as N	7664-41-7	10	μg/L	1640	20	<10	490	1300

Page : 4 of 4
Work Order : EP2207477

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: FRESH WATER (Matrix: WATER)			Sample ID	LVR-RW1	LVR-RW2	LVR-US	LVR-DS1	LVR-DS2
		Sampli	ng date / time	16-Jun-2022 12:08	16-Jun-2022 11:49	16-Jun-2022 11:21	16-Jun-2022 10:53	16-Jun-2022 10:25
Compound	CAS Number	LOR	Unit	EP2207477-001	EP2207477-002	EP2207477-003	EP2207477-004	EP2207477-005
				Result	Result	Result	Result	Result
EK055G-NH4: Ammonium as N by DA	\							
Ammonium as N	14798-03-9_N	10	ug/L	1320	20	<10	440	1280
EK057G: Nitrite as N by Discrete Ana	alyser							
Nitrite as N	14797-65-0	10	μg/L	<10	<10	<10	20	50
EK058G: Nitrate as N by Discrete An	alyser							
Nitrate as N	14797-55-8	10	μg/L	<10	<10	<10	10	10
EK059G: Nitrite plus Nitrate as N (NC	0x) by Discrete Ana	lyser						
Nitrite + Nitrate as N		10	μg/L	<10	<10	<10	30	60
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser							
Total Kjeldahl Nitrogen as N		100	μg/L	7700	1700	1700	2500	3400
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		100	μg/L	7700	1700	1700	2500	3500
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		10	μg/L	1450	180	190	190	230
EK071G: Reactive Phosphorus as P l	y discrete analyser							
Reactive Phosphorus as P	14265-44-2	10	μg/L	670	10	10	10	20
EP002: Dissolved Organic Carbon (D	OC)							
Dissolved Organic Carbon		1	mg/L	36				
EP008: Chlorophyll a, b,c and Pheopl	hytin a							
Chlorophyll a (Monochromatic)		1	μg/L			146	163	

CERTIFICATE OF ANALYSIS

Work Order : EP2212605

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : PO BOX 14

WEST PERTH WA. AUSTRALIA 6872

: +61 08 93210420 Telephone

Project : Lower Vass River Sediment Samples

Order number : 4602

Sampler : REBECCA COTTON

Site

: EN/222 Quote number No. of samples received : 22 No. of samples analysed : 22

Page : 1 of 7

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara Western Australia Australia 6065

Telephone : +61-8-9406 1301

: 21-Sep-2022 17:00 **Date Analysis Commenced** : 04-Oct-2022

Date Samples Received

Issue Date : 06-Oct-2022 16:58

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Client

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, Western Australia Daniel Fisher Perth ASS, Wangara, Western Australia **Inorganics Analyst**

Page : 2 of 7

Work Order : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 7
Work Order : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS01 a	SS01 b	SS01 ASS a	SS01 ASS b	SS02 a
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2212605-001	EP2212605-002	EP2212605-003	EP2212605-004	EP2212605-005
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit			7.8	7.8	
ø pH (Fox)		0.1	pH Unit			1.8	2.0	
ø Reaction Rate		1	-			Extreme	Extreme	
EA055: Moisture Content								
Initial Weight		0.001	g	10.8	8.84			12.1
Final Weight		0.001	g	3.26	2.27			2.29
EA055: Moisture Content (Dried @ 105-	110°C)							
Moisture Content		0.1	%	69.8	74.3			81.1

Page : 4 of 7
Work Order : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS02 b	SS02 ASS a	SS02 ASS b	SS03 a	SS03 b
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2212605-006	EP2212605-007	EP2212605-008	EP2212605-009	EP2212605-010
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit		7.7	7.4		
ø pH (Fox)		0.1	pH Unit		2.0	2.0		
ø Reaction Rate		1	-		Extreme	Extreme		
EA055: Moisture Content								
Initial Weight		0.001	g	7.23			14.8	6.95
Final Weight		0.001	g	2.32			4.12	1.55
EA055: Moisture Content (Dried @ 105-	110°C)							
Moisture Content		0.1	%	67.9			72.2	77.7

Page : 5 of 7

Work Order : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS03 ASS a	SS03 ASS b	SS04 a	SS04 b	SS04 ASS a
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2212605-011	EP2212605-012	EP2212605-013	EP2212605-014	EP2212605-015
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.3	7.5			7.6
ø pH (Fox)		0.1	pH Unit	2.1	2.7			2.4
ø Reaction Rate		1	-	Extreme	Extreme			Extreme
EA055: Moisture Content								
Initial Weight		0.001	g			9.35	8.94	
Final Weight		0.001	g			1.74	1.79	
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%			81.4	80.0	

 Page
 : 6 of 7

 Work Order
 : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS04 ASS b	SS04 ASS c	SS05 a	SS05 b	SS05 ASS a
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2212605-016	EP2212605-017	EP2212605-018	EP2212605-019	EP2212605-020
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.6	7.9			7.7
ø pH (Fox)		0.1	pH Unit	2.2	2.1			2.0
ø Reaction Rate		1	-	Extreme	Extreme			Extreme
EA055: Moisture Content								
Initial Weight		0.001	g			7.23	7.73	
Final Weight		0.001	g			1.63	1.34	
EA055: Moisture Content (Dried @ 105-1	10°C)							
Moisture Content		0.1	%			77.4	82.6	

Page : 7 of 7
Work Order : EP2212605

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vass River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS05 ASS b	SS05 ASS c	 	
		Samplii	ng date / time	21-Sep-2022 00:00	21-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EP2212605-021	EP2212605-022	 	
				Result	Result	 	
EA037: Ass Field Screening Analysis							
ø pH (F)		0.1	pH Unit	7.6	7.7	 	
ø pH (Fox)		0.1	pH Unit	1.9	2.2	 	
ø Reaction Rate		1	-	Extreme	Extreme	 	

CERTIFICATE OF ANALYSIS

Work Order : EP2213176

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone +61 08 93210420

Project : 4602 Lower Vasse River Sediment Samples

Order number : 4602

C-O-C number Sampler : REBECCA COTTON

Site

: EN/222 Quote number

No. of samples received : 5 No. of samples analysed : 5 Page : 1 of 3

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 29-Sep-2022 15:21

Date Analysis Commenced : 13-Oct-2022

Issue Date : 17-Oct-2022 21:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Fisher Inorganics Analyst Perth ASS, Wangara, WA Page : 2 of 3 Work Order : EP2213176

Client : 360 ENVIRONMENTAL PTY LTD
Project · 4602 Lower Vasse River Sediment Samples

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA033 (CRS Suite): Retained Acidity not required because pH KCl greater than or equal to 4.5
- This workorder is a rebatch of EP2212605.
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Page : 3 of 3
Work Order : EP2213176

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602 Lower Vasse River Sediment Samples

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	SS01 ASS a	SS01 ASS b	SS02 ASS a	SS04 ASS c	SS05 ASS a
		Sampli	ing date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2213176-001	EP2213176-002	EP2213176-003	EP2213176-004	EP2213176-005
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	7.6	6.5	7.5	7.7	7.4
Titratable Actual Acidity (23F)		2	mole H+/t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	2.37	2.04	3.12	2.91	2.74
acidity - Chromium Reducible Sulfur		10	mole H+/t	1480	1270	1950	1810	1710
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	1.22	0.79	1.98	1.92	1.52
acidity - Acid Neutralising Capacity		10	mole H+/t	243	157	395	384	304
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	0.39	0.25	0.63	0.62	0.49
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	2.11	1.87	2.70	2.50	2.42
Net Acidity (acidity units)		10	mole H+ / t	1320	1160	1680	1560	1510
Liming Rate		1	kg CaCO3/t	99	87	126	117	113
Net Acidity excluding ANC (sulfur units)		0.02	% S	2.37	2.04	3.12	2.91	2.75
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	1480	1270	1950	1810	1710
Liming Rate excluding ANC		1	kg CaCO3/t	111	95	146	136	128

CERTIFICATE OF ANALYSIS

Work Order : EP2214298

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : PO BOX 14

WEST PERTH WA, AUSTRALIA 6872

Telephone : +61 08 93210420

Project : Lower Vasse River Sediment Samples

Order number : 4602

Sampler : REBECCA COTTON

Site : ----

Quote number : EN/222
No. of samples received : 10
No. of samples analysed : 10

Page : 1 of 6

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 21-Sep-2022 17:00

Date Analysis Commenced : 31-Oct-2022

Issue Date • 04-Nov-2022 16:33

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Client

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, WA
Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA

Page : 2 of 6 Work Order : EP2214298

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Sediment Samples

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- This guideline comparison report only provides evaluation data where chemical parameters specifically listed within the DEC Waste Classification and Waste Definitions 1996 (as amended December 2019) guideline are analysed by ALS using P-19/2 package.
- This Automated Guideline Comparison report assesses potential chemical 'contaminants' versus guideline criteria. Other parameters may impact classification and 95% upper control limits may also be applied refer to EPA Regulations.
- This guideline comparison report only provides evaluation of total concentration data against upper limit thresholds for Classes I to IV.
- EG048G (Hexavalent Chromium by Alkaline Digest): poor Hexavalent Chromium matrix spike recovery possibly due to sample matrix interference. Confirmed by re-extraction and re-analysis.
- EG048G (Hexavalent Chromium by Alkaline Digestion): LOR raised for all samples due to possible sample matrix interference.
- EG048G (Hexavalent Chromium by Alkaline Digestion): Failed spike recoveries on sample #8 due to possible sample matrix interference. Results confirmed by re-extraction and re-analysis.
- For the 'Summary of Thresholds Reached or Exceeded' to accurately function, all samples must be analysed and included in the 'Analytical Results' section of the following report. Please verify that all required sample IDs are listed and analysed.

Page : 3 of 6
Work Order : EP2214298

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Sediment Samples

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	SS01 a	SS01 b	SS02 a	SS02 b	SS03 a
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2214298-001	EP2214298-002	EP2214298-003	EP2214298-004	EP2214298-005
				Result	Result	Result	Result	Result
EG035W: Water Leachable Mercury	by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG050G-W: Hexavalent Chromium -	Water Leachable							
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG005(ED093)W: Water Leachable N	Metals by ICPAES							
Aluminium	7429-90-5	0.10	mg/L	1.47	2.00	1.55	1.98	2.22
Arsenic	7440-38-2	0.01	mg/L	0.01	0.01	0.02	0.01	0.01
Barium	7440-39-3	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	7440-41-7	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Boron	7440-42-8	0.1	mg/L	0.2	0.1	0.2	0.2	0.2
Cadmium	7440-43-9	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt	7440-48-4	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	7440-50-8	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Lead	7439-92-1	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese	7439-96-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Nickel	7440-02-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	7440-22-4	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.01	<0.01	<0.01
Zinc	7440-66-6	0.01	mg/L	0.02	0.01	0.01	0.02	0.02
Molybdenum	7439-98-7	0.01	mg/L	0.02	0.02	0.02	0.03	0.03

Page : 4 of 6
Work Order : EP2214298

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Sediment Samples

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	SS03 b	SS04 a	SS04 b	SS05 a	SS05 b
		Samplii	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2214298-006	EP2214298-007	EP2214298-008	EP2214298-009	EP2214298-010
				Result	Result	Result	Result	Result
EG035W: Water Leachable Mercury b	y FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG050G-W: Hexavalent Chromium - V	Water Leachable							
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EG005(ED093)W: Water Leachable Mo	etals by ICPAES							
Aluminium	7429-90-5	0.10	mg/L	0.94	1.86	1.22	2.14	1.96
Arsenic	7440-38-2	0.01	mg/L	<0.01	0.02	0.01	0.02	0.02
Barium	7440-39-3	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Beryllium	7440-41-7	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Boron	7440-42-8	0.1	mg/L	0.1	0.2	0.2	0.2	0.2
Cadmium	7440-43-9	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Cobalt	7440-48-4	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	7440-50-8	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Lead	7439-92-1	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese	7439-96-5	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Nickel	7440-02-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver	7440-22-4	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	7440-62-2	0.01	mg/L	<0.01	0.01	0.01	0.01	0.01
Zinc	7440-66-6	0.01	mg/L	<0.01	0.02	0.01	0.02	0.02
Molybdenum	7439-98-7	0.01	mg/L	0.02	0.02	0.02	0.02	0.02

Page : 5 of 6
Work Order : EP2214298

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS01 a	SS01 b	SS02 a	SS02 b	SS03 a
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2214298-001	EP2214298-002	EP2214298-003	EP2214298-004	EP2214298-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.7	7.6	8.0	7.7	7.6
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	69.3	68.7	74.5	71.8	73.3
EG005(ED093)T: Total Metals by ICP-	AES							
Aluminium	7429-90-5	50	mg/kg	10300	10200	15500	14800	15600
Arsenic	7440-38-2	5	mg/kg	92	87	156	152	136
Barium	7440-39-3	10	mg/kg	50	40	60	60	60
Beryllium	7440-41-7	1	mg/kg	<1	<1	2	2	2
Boron	7440-42-8	50	mg/kg	<50	<50	50	<50	50
Cobalt	7440-48-4	2	mg/kg	10	9	11	11	12
Copper	7440-50-8	5	mg/kg	41	36	77	66	62
Manganese	7439-96-5	5	mg/kg	154	148	178	181	210
Molybdenum	7439-98-7	2	mg/kg	5	6	6	6	7
Nickel	7440-02-0	2	mg/kg	8	7	11	10	10
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Vanadium	7440-62-2	5	mg/kg	20	20	25	25	27
Zinc	7440-66-6	5	mg/kg	214	152	229	241	256
EG020T: Total Metals by ICP-MS								
Cadmium	7440-43-9	0.1	mg/kg	0.5	0.4	0.7	0.6	0.6
Lead	7439-92-1	0.1	mg/kg	65.2	58.6	97.2	92.6	92.9
Selenium	7782-49-2	1	mg/kg	2	2	3	3	3
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.1	0.1	0.2	0.2	0.2
EG048: Hexavalent Chromium (Alkalii	ne Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
EN60-DI: Bottle Leaching Procedure -	Inorganics/Non-Vo	latile O <u>rg</u>	anics (Glass V	/essel)				
Final pH		0.1	pH Unit	8.3	8.1	8.1	7.9	7.8

Page : 6 of 6
Work Order : EP2214298

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Sediment Samples

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	SS03 b	SS04 a	SS04 b	SS05 a	SS05 b
		Sampli	ng date / time	21-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2214298-006	EP2214298-007	EP2214298-008	EP2214298-009	EP2214298-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.8	7.8	8.0	7.7	8.0
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	77.7	76.5	76.9	74.0	75.0
EG005(ED093)T: Total Metals by ICP-/	AES							
Aluminium	7429-90-5	50	mg/kg	17800	14800	12200	14100	13300
Arsenic	7440-38-2	5	mg/kg	160	134	109	120	123
Barium	7440-39-3	10	mg/kg	70	60	50	60	60
Beryllium	7440-41-7	1	mg/kg	2	<1	<1	2	<1
Boron	7440-42-8	50	mg/kg	60	50	<50	50	50
Cobalt	7440-48-4	2	mg/kg	14	11	10	11	11
Copper	7440-50-8	5	mg/kg	67	60	51	52	51
Manganese	7439-96-5	5	mg/kg	238	190	163	181	181
Molybdenum	7439-98-7	2	mg/kg	8	7	6	7	6
Nickel	7440-02-0	2	mg/kg	12	10	9	10	9
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Vanadium	7440-62-2	5	mg/kg	30	25	21	26	24
Zinc	7440-66-6	5	mg/kg	295	252	198	199	198
EG020T: Total Metals by ICP-MS								
Cadmium	7440-43-9	0.1	mg/kg	0.6	0.6	0.5	0.6	0.6
Lead	7439-92-1	0.1	mg/kg	102	82.7	74.1	80.5	78.6
Selenium	7782-49-2	1	mg/kg	3	3	2	2	3
EG035T: Total Recoverable Mercury	by FIMS							
Mercury	7439-97-6	0.1	mg/kg	0.2	0.2	0.1	0.2	0.2
EG048: Hexavalent Chromium (Alkalii	ne Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
EN60-DI: Bottle Leaching Procedure -	Inorganics/Non-Vo	latile O <u>rg</u>	anics (Glass \	/essel)				
Final pH		0.1	pH Unit	7.9	8.0	7.9	8.0	8.2

CERTIFICATE OF ANALYSIS

Work Order : EP2216255

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.5

C-O-C number

Sampler · Paul Monaco

Site

Quote number : EP/931/22

No. of samples received : 6 No. of samples analysed : 6

Page : 1 of 4

> Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 01-Dec-2022 12:30 **Date Analysis Commenced**

: 02-Dec-2022

Issue Date · 06-Dec-2022 17:57

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Daniel Fisher Inorganics Analyst Perth ASS, Wangara, WA Page : 2 of 4 Work Order : EP2216255

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA033 (CRS Suite): Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 4
Work Order : EP2216255

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS1	TF_ASS2	TF_ASS3	TF_ASS4	TF_ASS5
		Sampli	ng date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216255-001	EP2216255-002	EP2216255-003	EP2216255-004	EP2216255-005
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	8.9		9.1		
Titratable Actual Acidity (23F)		2	mole H+ / t	<2		<2		
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02		<0.02		
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.420		0.406		
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	262		253		
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	9.28		10.1		
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1850		2020		
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	2.97		3.24		
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5		1.5		
Net Acidity (sulfur units)		0.02	% S	<0.02		<0.02		
Net Acidity (acidity units)		10	mole H+ / t	<10		<10		
Liming Rate		1	kg CaCO3/t	<1		<1		
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.42		0.41		
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	262		253		
Liming Rate excluding ANC		1	kg CaCO3/t	20		19		
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	8.0	8.0	8.2	8.0	8.2
ø pH (Fox)		0.1	pH Unit	5.8	5.8	5.8	5.8	5.8
Ø Reaction Rate		1	-	Moderate	Moderate	Moderate	Moderate	Moderate

Page : 4 of 4
Work Order : EP2216255

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS6	 	
		Sampli	ng date / time	29-Nov-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EP2216255-006	 	
				Result	 	
EA033-A: Actual Acidity						
pH KCI (23A)		0.1	pH Unit	8.8	 	
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	 	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	 	
EA033-B: Potential Acidity						
Chromium Reducible Sulfur (22B)		0.005	% S	0.917	 	
acidity - Chromium Reducible Sulfur		10	mole H+/t	572	 	
(a-22B)						
EA033-C: Acid Neutralising Capacity						
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	12.6	 	
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	2520	 	
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	4.04	 	
EA033-E: Acid Base Accounting						
ANC Fineness Factor		0.5	-	1.5	 	
Net Acidity (sulfur units)		0.02	% S	<0.02	 	
Net Acidity (acidity units)		10	mole H+ / t	<10	 	
Liming Rate		1	kg CaCO3/t	<1	 	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.92	 	
Net Acidity excluding ANC (acidity units)		10	mole H+/t	572	 	
Liming Rate excluding ANC		1	kg CaCO3/t	43	 	
EA037: Ass Field Screening Analysis						
ø pH (F)		0.1	pH Unit	8.2	 	
ø pH (Fox)		0.1	pH Unit	5.7	 	
ø Reaction Rate		1	-	Moderate	 	

CERTIFICATE OF ANALYSIS

Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.3

C-O-C number : ----

Sampler : Paul Monaco

Site : --

Quote number : EP/931/22

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 11

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 01-Dec-2022 12:30

Date Analysis Commenced : 02-Dec-2022

Issue Date 13-Dec-2022 19:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW
Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA
David Viner SENIOR LAB TECH Perth Organics, Wangara, WA
Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- This guideline comparison report only provides evaluation data where chemical parameters specifically listed within the DEC Waste Classification and Waste Definitions 1996 (as amended December 2019) guideline are analysed by ALS using P-19/1 and P-19/2 package.
- EK040T conducted by ALS Melbourne, NATA accreditation no. 825, site no 13778
- EP035SF and EP202 conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- EP202: Particular samples required dilution due to matrix interferences. LOR values have been adjusted accordingly.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP074: Where reported, Total Trihalomethanes is the sum of the reported concentrations of all Trihalomethanes at or above the LOR.
- EP074: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP074: Where reported, Sum of chlorinated hydrocarbons includes carbon tetrachloride, chlorobenzene, chloroform, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorothene, 1,1-dichlorothene, cis-1,2-dichlorothene, trans-1,2-dichlorothene, 1,1,1-trichloroethane, 1,1,1-trichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethane, trichloroet
- EP074: Where reported, Total Trimethylbenzenes is the sum of the reported concentrations of 1.2.3-Trimethylbenzene, 1.2.4-Trimethylbenzene and 1.3.5-Trimethylbenzene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- This guideline comparison report only provides evaluation of total concentration data against upper limit thresholds for Classes I to IV.
- EP075(SIM): High LCS recovery deemed acceptable as all associated analyte results are less than LOR.
- EP068: Sample 'TF WC3' shows poor matrix spike recovery due to matrix interference.
- EK026SF, EK028SF (Cyanide) Poor matrix spike recoveries for sample EP2216258-003 due to possible sample matrix interference. This was confirmed by re-analysis. Please scrutinise the results accordingly.
- For the 'Summary of Thresholds Reached or Exceeded' to accurately function, all samples must be analysed and included in the 'Analytical Results' section of the following report. Please verify that all required sample IDs are listed and analysed.
- EN60-DI: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3.

Page : 3 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
		Sampli	ng date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
				Result	Result	Result	Result	Result
EG035W: Water Leachable Mercury b	by FIMS							
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	<0.00004	<0.00004
EG049G-W: Trivalent Chromium in W	later Leachates							
Trivalent Chromium	16065-83-1	0.005	mg/L	0.008	0.008	0.008	0.007	0.006
EG050G LL-W: Hexavalent Chromiun	n in Water Leachate	s by Discı	ete Analyser	- Low Level				
Hexavalent Chromium	18540-29-9	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
EG094W: Water Leachable Metals by	ORC-ICPMS							
Antimony	7440-36-0	1.0	μg/L	1.6	1.6	1.9	1.0	1.5
Arsenic	7440-38-2	0.2	μg/L	3.1	3.3	3.4	2.4	2.8
Cadmium	7440-43-9	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
Chromium	7440-47-3	5.0	μg/L	8.4	7.9	8.5	6.8	5.7
Cobalt	7440-48-4	0.1	μg/L	2.0	2.0	2.0	1.7	1.8
Copper	7440-50-8	2.0	μg/L	7.7	8.4	9.4	7.4	8.4
Lead	7439-92-1	0.2	μg/L	17.5	18.0	17.1	14.9	16.1
Manganese	7439-96-5	0.5	μg/L	31.6	37.0	19.4	22.8	19.6
Molybdenum	7439-98-7	1.0	μg/L	14.9	14.1	19.2	10.4	15.9
Nickel	7440-02-0	2.0	μg/L	3.0	2.5	2.4	<2.0	2.0
Selenium	7782-49-2	0.2	μg/L	0.6	0.6	0.8	0.6	0.7
Silver	7440-22-4	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium	7440-28-0	0.05	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Uranium	7440-61-1	0.05	μg/L	3.06	3.02	3.68	2.58	3.14
Zinc	7440-66-6	5	μg/L	34	37	40	32	34

Page : 4 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC6	 	
		Sampli	ng date / time	29-Nov-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EP2216258-006	 	
				Result	 	
EG035W: Water Leachable Mercury by	FIMS					
Mercury	7439-97-6	0.00004	mg/L	<0.00004	 	
EG049G-W: Trivalent Chromium in Wa	ter Leachates					
Trivalent Chromium	16065-83-1	0.005	mg/L	0.006	 	
EG050G LL-W: Hexavalent Chromium	in Water Leachates	s by Discr	ete Analyser	- Low Level		
Hexavalent Chromium	18540-29-9	0.001	mg/L	<0.001	 	
EG094W: Water Leachable Metals by 0	ORC-ICPMS					
Antimony	7440-36-0	1.0	μg/L	1.1	 	
Arsenic	7440-38-2	0.2	μg/L	2.5	 	
Cadmium	7440-43-9	0.10	μg/L	<0.10	 	
Chromium	7440-47-3	5.0	μg/L	6.4	 	
Cobalt	7440-48-4	0.1	μg/L	1.6	 	
Copper	7440-50-8	2.0	μg/L	7.4	 	
Lead	7439-92-1	0.2	μg/L	14.6	 	
Manganese	7439-96-5	0.5	μg/L	19.3	 	
Molybdenum	7439-98-7	1.0	μg/L	11.3	 	
Nickel	7440-02-0	2.0	μg/L	2.0	 	
Selenium	7782-49-2	0.2	μg/L	0.6	 	
Silver	7440-22-4	0.2	μg/L	<0.2	 	
Thallium	7440-28-0	0.05	μg/L	<0.05	 	
Uranium	7440-61-1	0.05	μg/L	2.48	 	
Zinc	7440-66-6	5	μg/L	38	 	

Page : 5 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
		Sampli	ng date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.2	8.2	8.4	8.5	8.4
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	29.5	27.1	36.8	18.9	26.5
EG005(ED093)T: Total Metals by IC	P-AES							
Aluminium	7429-90-5	50	mg/kg	3960	4120	4450	2760	3120
Arsenic	7440-38-2	5	mg/kg	14	14	21	10	11
Barium	7440-39-3	10	mg/kg	10	10	20	<10	10
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1	<1	<1
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cobalt	7440-48-4	2	mg/kg	<2	<2	2	<2	<2
Copper	7440-50-8	5	mg/kg	9	10	13	5	8
Manganese	7439-96-5	5	mg/kg	44	49	48	23	37
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	<2
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Vanadium	7440-62-2	5	mg/kg	8	8	8	<5	6
Zinc	7440-66-6	5	mg/kg	28	29	37	17	25
EG020T: Total Metals by ICP-MS								
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Lead	7439-92-1	0.1	mg/kg	12.4	13.1	16.8	7.5	11.2
Selenium	7782-49-2	1	mg/kg	<1	<1	<1	<1	<1
EG035T: Total Recoverable Mercu	rv by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EG048: Hexavalent Chromium (Alk	aline Digest)							•
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EK026SF: Total CN by Segmented								
Total Cyanide	57-12-5	1	mg/kg	<1		<1		<1
EK028SF: Weak Acid Dissociable								
Weak Acid Dissociable Cyanide	CN by Segmented Flo	w Analysi 1	mg/kg	<1		<1		<1
•		•			-			
EK040T: Fluoride Total Fluoride	16984-48-8	40	mg/kg	80		150		120
			3 3	ou		150		120
EN60-DI: Bottle Leaching Procedur				7.0	9.0	9.2	0.4	0.0
Final pH		0.1	pH Unit	7.9	8.0	8.2	8.4	8.3

Page : 6 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

ub-Matrix: SOIL Matrix: SOIL)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
<u> </u>		Samplii	ng date / time	29-Nov-2022 00:00	29-Nov-2022 00:00	29-Nov-2022 00:00	29-Nov-2022 00:00	29-Nov-2022 00:0
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
•				Result	Result	Result	Result	Result
P035G: Total Phenol by Discrete A	nalyser							
Phenols (Total)		1	mg/kg	1		1		1
P066: Polychlorinated Biphenyls (F	PCB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1		<0.1
P068A: Organochlorine Pesticides	(OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05		<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05		<0.05		<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05		<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05		<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05		<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05		<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05		<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05		<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05		<0.05		<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05		<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05		<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05		<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05		<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05		<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05		<0.05		<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05		<0.05		<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05		<0.05		<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05		<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05		<0.05		<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05		<0.05		<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2		<0.2		<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05		<0.05		<0.05
Methoxychlor	72-43-5	0.2	mg/kg	<0.2		<0.2		<0.2
Total OCP		0.05	mg/kg	<0.05		<0.05		<0.05
P070: Total Petroleum Hydrocarbo	ns - Speciation							
Aliphatic C16-C35		100	mg/kg	<100		140		<100
Aliphatic > C35		100	mg/kg	<100		<100		<100
Aromatic C16-C35		90	mg/kg	<90		100		<90
Aromatic > C35		100	mg/kg	<100		<100		<100

Page : 7 of 11
Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
		Sampli	ng date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
				Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hy	drocarbons - Continued							
Styrene	100-42-5	0.5	mg/kg	<0.5		<0.5		<0.5
EP075(SIM)A: Phenolic Compour	nds							
Phenol	108-95-2	0.5	mg/kg	<0.5		<0.5		<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5		<0.5		<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5		<0.5		<0.5
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1		<1		<1
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5		<0.5		<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5		<0.5		<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5		<0.5		<0.5
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5		<0.5		<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5		<0.5		<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5		<0.5		<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5		<0.5		<0.5
Pentachlorophenol	87-86-5	2	mg/kg	<2		<2		<2
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		0.7		<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of polycyclic aromatic hydroc	arbons	0.5	mg/kg	<0.5		0.7		<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		0.6

Page : 8 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
		Sampli	ng date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued						
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		1.2
EP080/071: Total Petroleum Hydrocart	oons							
C6 - C9 Fraction		10	mg/kg	<10		<10		<10
C10 - C14 Fraction		50	mg/kg	<50		<50		<50
C15 - C28 Fraction		100	mg/kg	<100		230		<100
C29 - C36 Fraction		100	mg/kg	<100		180		<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50		410		<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10		<10
^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10		<10		<10
(F1)	_							
>C10 - C16 Fraction		50	mg/kg	<50		<50		<50
>C16 - C34 Fraction		100	mg/kg	<100		380		<100
>C34 - C40 Fraction		100	mg/kg	<100		<100		<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50		380		<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50		<50		<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		<0.5
^ Total Xylenes		0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2		<0.2		<0.2
Naphthalene	91-20-3	1	mg/kg	<1		<1		<1
EP202A: Phenoxyacetic Acid Herbicid	es by LCMS							
2.4-D	94-75-7	0.02	mg/kg	<0.04		<0.04		<0.04
EP066S: PCB Surrogate						<u> </u>		
Decachlorobiphenyl	2051-24-3	0.1	%	82.3		86.4		88.5
EP068S: Organochlorine Pesticide Su								
Dibromo-DDE	21655-73-2	0.05	%	72.8		75.9		79.0
		0.00	,,,	1 2.0		10.0		10.0
EP068T: Organophosphorus Pesticide DEF		0.05	%	50.1		58.8	I	47.6
NEL	78-48-8	0.05	70	ĐU. T		50.6		47.6

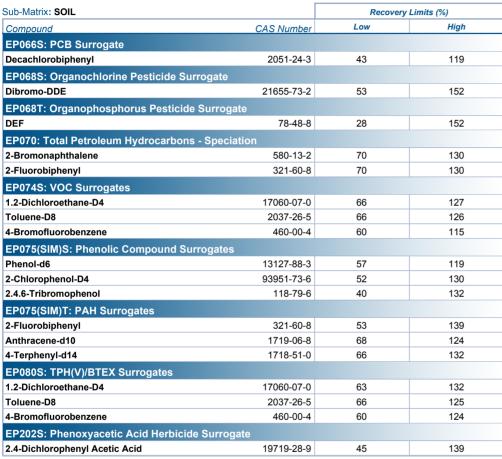
Page : 9 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC1	TF_WC2	TF_WC3	TF_WC4	TF_WC5
		Sampli	ing date / time	29-Nov-2022 00:00				
Compound	CAS Number	LOR	Unit	EP2216258-001	EP2216258-002	EP2216258-003	EP2216258-004	EP2216258-005
				Result	Result	Result	Result	Result
EP070: Total Petroleum Hydrocarbor	ns - Speciation							
2-Bromonaphthalene	580-13-2	1	%	126		116		125
2-Fluorobiphenyl	321-60-8	1	%	122		116		109
EP074S: VOC Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.5	%	75.6		69.1		74.4
Toluene-D8	2037-26-5	0.5	%	81.4		76.6		78.1
4-Bromofluorobenzene	460-00-4	0.5	%	83.2		76.1		81.1
EP075(SIM)S: Phenolic Compound S	urrogates							
Phenol-d6	13127-88-3	0.5	%	74.1		73.3		69.8
2-Chlorophenol-D4	93951-73-6	0.5	%	80.7		84.2		80.1
2.4.6-Tribromophenol	118-79-6	0.5	%	85.6		91.5		92.5
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	77.0		84.1		82.7
Anthracene-d10	1719-06-8	0.5	%	82.4		86.6		83.9
4-Terphenyl-d14	1718-51-0	0.5	%	94.0		86.4		94.8
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.3		79.4		84.5
Toluene-D8	2037-26-5	0.2	%	80.6		76.5		77.8
4-Bromofluorobenzene	460-00-4	0.2	%	87.9		79.9		87.6
EP202S: Phenoxyacetic Acid Herbici	de Surrogate							
2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.02	%	87.0		66.6		64.7

Page : 10 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring



Sub-Matrix: SOIL (Matrix: SOIL)	Sample ID			TF_WC6	 	
	Sampling date / time			29-Nov-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EP2216258-006	 	
				Result	 	
EA002: pH 1:5 (Soils)						
pH Value		0.1	pH Unit	8.5	 	
EA055: Moisture Content (Dried @ 105-1	10°C)					
Moisture Content		1.0	%	17.6	 	
EG005(ED093)T: Total Metals by ICP-AE	S					
Aluminium	7429-90-5	50	mg/kg	1470	 	
Arsenic	7440-38-2	5	mg/kg	<5	 	
Barium	7440-39-3	10	mg/kg	<10	 	
Beryllium	7440-41-7	1	mg/kg	<1	 	
Boron	7440-42-8	50	mg/kg	<50	 	
Cobalt	7440-48-4	2	mg/kg	<2	 	
Copper	7440-50-8	5	mg/kg	<5	 	
Manganese	7439-96-5	5	mg/kg	16	 	
Molybdenum	7439-98-7	2	mg/kg	<2	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Silver	7440-22-4	2	mg/kg	<2	 	
Vanadium	7440-62-2	5	mg/kg	<5	 	
Zinc	7440-66-6	5	mg/kg	12	 	
EG020T: Total Metals by ICP-MS						
Cadmium	7440-43-9	0.1	mg/kg	<0.1	 	
Lead	7439-92-1	0.1	mg/kg	5.1	 	
Selenium	7782-49-2	1	mg/kg	<1	 	
EG035T: Total Recoverable Mercury by	FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EG048: Hexavalent Chromium (Alkaline	Digest)					
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	 	
EN60-DI: Bottle Leaching Procedure - Inc	organics/PFAS (F	Plastic Ve	ssel)			
Final pH		0.1	pH Unit	8.4	 	

Page : 11 of 11 Work Order : EP2216258

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Surrogate Control Limits

Inter-Laboratory Testing

Analysis conducted by ALS Melbourne, NATA accreditation no. 825, site no. 13778 (Chemistry).

(SOIL) EK040T: Fluoride Total

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(SOIL) EP202A: Phenoxyacetic Acid Herbicides by LCMS (SOIL) EP202S: Phenoxyacetic Acid Herbicide Surrogate (SOIL) EP035G: Total Phenol by Discrete Analyser

CERTIFICATE OF ANALYSIS

Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : Lower Vasse River Dredge Monitoring

Order number : 4602.5

C-O-C number : ----

Sampler : Paul Monaco

Site : ---

Quote number : EP/931/22

No. of samples received : 9
No. of samples analysed : 6

Page : 1 of 11

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 24-Jan-2023 13:40

Date Analysis Commenced : 27-Jan-2023

Issue Date : 10-Feb-2023 21:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA
Daniel Fisher	Inorganics Analyst	Perth Inorganics, Wangara, WA
David Viner	SENIOR LAB TECH	Perth Organics, Wangara, WA
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
MINNIE TRAN	Approved Asbestos Identifier	Melbourne Asbestos, Springvale, VIC
Thomas Donovan	Senior Organic Chemist	Perth Organics, Wangara, WA

Page : 2 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- This guideline comparison report only provides evaluation data where chemical parameters specifically listed within the DEC Waste Classification and Waste Definitions 1996 (as amended December 2019) guideline are analysed by ALS using P-19/2 package.
- Fluoride and Asbestos analysis conducted by ALS Melbourne, NATA accreditation no. 825, site no 13778
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- This Automated Guideline Comparison report assesses potential chemical 'contaminants' versus guideline criteria. Other parameters may impact classification and 95% upper control limits may also be applied refer to EPA Regulations.
- This guideline comparison report only provides evaluation of total concentration data against upper limit thresholds for Classes I to IV.
- EK025SF, EK026SF, EK028SF: LCS recovery for FCN (EK025SF) fall outside the ALS Dynamic Control Limit. However, they are within the acceptance criteria based on ALS DQO. No further action is required.
- EK025SF, EK026SF, EK028SF: Low Matrix spike recovery noted for sample #EP2300676-002, This was confirmed by re-preparation and re-analysis.
- EK025SF: Low Matrix spike recovery noted for sample #EP2300844-002, This was confirmed by re-preparation and re-analysis.
- EG048G (Hexavalent Chromium): Poor Hexavalent Chromium spike recoveries possibly due to sample matrix effects. Confirmed by re-extraction and re-analysis.
- EA200: As only one sample container was submitted for multiple tests, at the client's request, sub sampling was conducted prior to Asbestos analysis. As this has the potential to understate detection, results should be scrutinised accordingly.
- For the 'Summary of Thresholds Reached or Exceeded' to accurately function, all samples must be analysed and included in the 'Analytical Results' section of the following report. Please verify that all required sample IDs are listed and analysed.
- ASS: EA033 (CRS Suite): Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project · Lower Vasse River Dredge Monitoring

- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 - Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)
 - The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos
 - Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.
 - All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.
- EN60-DI: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3.

Page : 4 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC7	TF_WC8	TF_WC9	
		Samplii	ng date / time	23-Jan-2023 00:00	23-Jan-2023 00:00	23-Jan-2023 00:00	
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	
				Result	Result	Result	
EG035W: Water Leachable Mercury by	y FIMS						
Mercury	7439-97-6	0.00004	mg/L	<0.00004	<0.00004	<0.00004	
EG049G-W: Trivalent Chromium in Wa	ater Leachates						
Trivalent Chromium	16065-83-1	0.005	mg/L	<0.005	<0.005	0.008	
EG050G LL-W: Hexavalent Chromium	in Water Leachate	s by Discr	ete Analyser	- Low Level			
Hexavalent Chromium	18540-29-9	0.001	mg/L	<0.001	<0.001	<0.001	
EG094W: Water Leachable Metals by	ORC-ICPMS						
Aluminium	7429-90-5	15	μg/L	4770	2520	8320	
Antimony	7440-36-0	1.0	μg/L	1.5	<1.0	<1.0	
Arsenic	7440-38-2	0.2	μg/L	2.8	1.6	3.9	
Barium	7440-39-3	5.0	μg/L	33.6	21.6	31.4	
Beryllium	7440-41-7	0.1	μg/L	<0.1	<0.1	0.2	
Boron	7440-42-8	20	μg/L	120	85	72	
Cadmium	7440-43-9	0.10	μg/L	<0.10	<0.10	<0.10	
Chromium	7440-47-3	5.0	μg/L	<5.0	<5.0	8.4	
Cobalt	7440-48-4	0.1	μg/L	1.6	1.1	2.5	
Copper	7440-50-8	2.0	μg/L	8.7	5.6	11.2	
Lead	7439-92-1	0.2	μg/L	15.3	6.7	18.9	
Manganese	7439-96-5	0.5	μg/L	26.6	30.7	90.3	
Molybdenum	7439-98-7	1.0	μg/L	16.5	11.8	8.4	
Nickel	7440-02-0	2.0	μg/L	<2.0	<2.0	2.7	
Selenium	7782-49-2	0.2	μg/L	0.5	0.3	0.5	
Silver	7440-22-4	0.2	μg/L	<0.2	<0.2	<0.2	
Thallium	7440-28-0	0.05	μg/L	<0.05	<0.05	<0.05	
Uranium	7440-61-1	0.05	μg/L	2.26	2.77	2.22	
Vanadium	7440-62-2	0.5	μg/L	9.9	5.6	14.5	
Zinc	7440-66-6	5	μg/L	46	24	64	

Page : 5 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	TF_WC7	TF_WC8	TF_WC9	TF_ASS7	TF_ASS8
(Matrix: GOIL)		Sampli	ing date / time	23-Jan-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	EP2300844-004	EP2300844-005
Compound	Crite ritaringer			Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.0	8.0	8.2		
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit					8.8
Titratable Actual Acidity (23F)		2	mole H+ / t					<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S					<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S					0.592
acidity - Chromium Reducible Sulfur		10	mole H+ / t					369
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3					10.7
acidity - Acid Neutralising Capacity		10	mole H+ / t					2130
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S					3.42
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-					1.5
Net Acidity (sulfur units)		0.02	% S					<0.02
Net Acidity (acidity units)		10	mole H+ / t					<10
Liming Rate		1	kg CaCO3/t					<1
Net Acidity excluding ANC (sulfur units)		0.02	% S					0.59
Net Acidity excluding ANC (acidity units)		10	mole H+ / t					369
Liming Rate excluding ANC		1	kg CaCO3/t					28
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit				7.6	7.3
ø pH (Fox)		0.1	pH Unit				5.8	5.8
Ø Reaction Rate		1	-				Extreme	Strong
EA055: Moisture Content (Dried @ 105-1	10°C)							
Moisture Content		1.0	%	29.5	27.0	22.3		
EA200: AS 4964 - 2004 Identification of A	sbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		
Asbestos (Trace)	1332-21-4	5	Fibres	No	No	No		
Asbestos Type	1332-21-4	-		-	-	-		
Synthetic Mineral Fibre		0.1		No	No	No		

Page : 6 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	TF_WC7	TF_WC8	TF_WC9	TF_ASS7	TF_ASS8
		Sampli	ng date / time	23-Jan-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	EP2300844-004	EP2300844-005
·				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils	s - Continue	ed .					
Organic Fibre		0.1		Yes	Yes	Yes		
Sample weight (dry)		0.01	g	38.7	39.1	38.9		
APPROVED IDENTIFIER:		-		M. TRAN	M. TRAN	M. TRAN		
EA200N: Asbestos Quantification (non-	-NATA)							
Ø Asbestos (Fines and Fibrous	1332-21-4	0.0004	g	<0.0004	<0.0004	<0.0004		
<7mm)								
ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001	<0.001	<0.001		
ø Weight Used for % Calculation		0.0001	kg	0.0387	0.0391	0.0389		
ø Fibrous Asbestos >7mm		0.0004	g	<0.0004	<0.0004	<0.0004		
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg	4230	3740	2970		
EG005(ED093)T: Total Metals by ICP-Al	ES							
Aluminium	7429-90-5	50	mg/kg	5650	5210	4600		
Antimony	7440-36-0	5	mg/kg	<5	<5	<5		
Arsenic	7440-38-2	5	mg/kg	18	12	7		
Barium	7440-39-3	10	mg/kg	20	10	10		
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1		
Boron	7440-42-8	50	mg/kg	<50	<50	<50		
Chromium	7440-47-3	2	mg/kg	10	10	9		
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2		
Copper	7440-50-8	5	mg/kg	10	7	5		
Lead	7439-92-1	5	mg/kg	14	10	6		
Manganese	7439-96-5	5	mg/kg	59	61	52		
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2		
Nickel	7440-02-0	2	mg/kg	<2	<2	<2		
Silver	7440-22-4	2	mg/kg	<2	<2	<2		
Tin	7440-31-5	5	mg/kg	<5	<5	<5		
Vanadium	7440-62-2	5	mg/kg	11	11	10		
Zinc	7440-66-6	5	mg/kg	34	25	14		
EG020T: Total Metals by ICP-MS								
Thallium	7440-28-0	0.1	mg/kg	<0.1	<0.1	<0.1		
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1		
Uranium	7440-61-1	0.1	mg/kg	1.0	0.8	0.6		
Lead	7439-92-1	0.1	mg/kg	14.8	11.5	7.4		

Page : 7 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	TF_WC7	TF_WC8	TF_WC9	TF_ASS7	TF_ASS8
		Sampl	ing date / time	23-Jan-2023 00:00	23-Jan-2023 00:00	23-Jan-2023 00:00	23-Jan-2023 00:00	23-Jan-2023 00:00
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	EP2300844-004	EP2300844-005
·				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS - Cont	inued							
Selenium	7782-49-2	1	mg/kg	<1	<1	<1		
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1		
EG048: Hexavalent Chromium (Alkalin	e Digest)							
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5		
EG049: Trivalent Chromium								
Trivalent Chromium	16065-83-1	2	mg/kg	10	10	9		
EK025SF: Free CN by Segmented Flo								
Free Cyanide		1	mg/kg	<1	<1	<1		
EK028SF: Weak Acid Dissociable CN		v Analys						
Weak Acid Dissociable Cyanide	by Segmented Flow	v Allalys 1	mg/kg	<1	<1	<1		
EK040T: Fluoride Total		·	99		•			
Fluoride	16984-48-8	40	mg/kg	150	120	110		
				100	120	110		
EN60-DI: Bottle Leaching Procedure - Final pH	inorganics/PFA5 (F	0.1	pH Unit	7.9	7.8	8.2		
•		0.1	prionit	7.5	7.0	0.2		
EP066: Polychlorinated Biphenyls (PC		0.1	ma/ka	<0.1	<0.1	<0.1		
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	<0.1		
EP068A: Organochlorine Pesticides (C		0.05		10.05	10.05	·0.05		I
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05		
	0-2							
EP071 SG: Total Recoverable Hydroca					.50	.50		I
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50		
>C16 - C34 Fraction >C34 - C40 Fraction		100	mg/kg	<100 <100	<100 <100	<100 <100		
>C34 - C40 Fraction ^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50		
· ,		50	mg/kg mg/kg	<50 <50	<50	<50 <50		
^ >C10 - C16 Fraction minus Naphthalene		30	ilig/kg	\ 30	\30	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
(F2)	who we in Cail -Cilia	مام امام	00110					l .
EP071 SG-S: Total Petroleum Hydroca C10 - C14 Fraction	rbons in Soil - Silic	a gei cie 50	anup mg/kg	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50		
2.2 OOO i ladadii (daiii)			9/119		.00	.00	<u> </u>	

Page : 8 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	TF_WC7	TF_WC8	TF_WC9	TF_ASS7	TF_ASS8
		Sampli	ing date / time	23-Jan-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	EP2300844-004	EP2300844-005
				Result	Result	Result	Result	Result
EP075(SIM)A: Phenolic Compounds - Con	tinued							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	<0.5		
EP075(SIM)B: Polynuclear Aromatic Hydr	rocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6		
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2		
EP080/071: Total Recoverable Hydrocarb	ons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10		
>C10 - C16 Fraction		20	mg/kg	<20	<20	<20		
>C16 - C34 Fraction		100	mg/kg	220	180	180		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100		
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		
^ Total Xylenes		1.0	mg/kg	<1.0	<1.0	<1.0		
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	59.0	51.7	76.8		
EP068S: Organochlorine Pesticide Surrog	gate							
Dibromo-DDE	21655-73-2	0.05	%	103	95.2	117		
EP068T: Organophosphorus Pesticide Su	urrogate							
DEF	78-48-8	0.05	%	109	99.1	133		
EP075(SIM)S: Phenolic Compound Surro	gates							
Phenol-d6	13127-88-3	0.5	%	74.1	73.5	67.1		
2-Chlorophenol-D4	93951-73-6	0.5	%	66.0	66.8	62.8		
2.4.6-Tribromophenol	118-79-6	0.5	%	64.9	72.0	67.6		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	71.0	73.5	65.7		
Anthracene-d10	1719-06-8	0.5	%	74.0	73.4	70.2		
4-Terphenyl-d14	1718-51-0	0.5	%	75.3	73.9	71.3		
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	89.9	92.6	97.7		

Page : 9 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Sub-Matrix: SEDIMENT (Matrix: SOIL)			Sample ID	TF_WC7	TF_WC8	TF_WC9	TF_ASS7	TF_ASS8
		Sampli	ng date / time	23-Jan-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2300844-001	EP2300844-002	EP2300844-003	EP2300844-004	EP2300844-005
				Result	Result	Result	Result	Result
EP080S: TPH(V)/BTEX Surrogate	s - Continued							
Toluene-D8	2037-26-5	0.2	%	70.2	67.1	68.2		
4-Bromofluorobenzene	460-00-4	0.2	%	68.4	69.3	75.0		

Page : 10 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Analytical Results

Sub-Matrix: SEDIMENT (Matrix: SOIL)	Sample ID			TF_ASS9	 	
	Samplii	ng date / time	23-Jan-2023 00:00	 	 	
Compound	CAS Number	LOR	Unit	EP2300844-006	 	
				Result	 	
EA037: Ass Field Screening Analysis						
ø pH (F)		0.1	pH Unit	7.3	 	
ø pH (Fox)		0.1	pH Unit	5.7	 	
ø Reaction Rate		1	-	Strong	 	

Analytical Results

Descriptive Results

Sub-Matrix: SEDIMENT

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils	
EA200: Description	TF_WC7 - 23-Jan-2023 00:00	Brown sandy soil with organic matter.
EA200: Description	TF_WC8 - 23-Jan-2023 00:00	Brown sandy soil with organic matter.
EA200: Description	TF_WC9 - 23-Jan-2023 00:00	Brown sandy soil with organic matter.

Page : 11 of 11 Work Order : EP2300844

Client : 360 ENVIRONMENTAL PTY LTD
Project : Lower Vasse River Dredge Monitoring

Surrogate Control Limits

Sub-Matrix: SEDIMENT		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	43	119
EP068S: Organochlorine Pesticide Su	rrogate		
Dibromo-DDE	21655-73-2	53	152
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	28	152
EP075(SIM)S: Phenolic Compound Su	rrogates		
Phenol-d6	13127-88-3	57	119
2-Chlorophenol-D4	93951-73-6	52	130
2.4.6-Tribromophenol	118-79-6	40	132
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	53	139
Anthracene-d10	1719-06-8	68	124
4-Terphenyl-d14	1718-51-0	66	132
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	63	132
Toluene-D8	2037-26-5	66	125
4-Bromofluorobenzene	460-00-4	60	124

Inter-Laboratory Testing

Analysis conducted by ALS Melbourne, NATA accreditation no. 825, site no. 13778 (Chemistry).

(SOIL) EK040T: Fluoride Total

(SOIL) EA200N: Asbestos Quantification (non-NATA)

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

CERTIFICATE OF ANALYSIS

Work Order : EP2302658

: 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone +61 08 93210420

Project : 4602.5 Lower Vasse River Dredge Monitoring

Order number : 4602.5

C-O-C number

Client

Sampler · PAUL ROBERTSON

Site

Quote number : EP/205/23 V2

No. of samples received : 28 No. of samples analysed : 28 Page : 1 of 20

Date Samples Received

Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

: 02-Mar-2023 16:30 **Date Analysis Commenced** : 03-Mar-2023

Issue Date · 15-Mar-2023 16:09

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Canhuang Ke Inorganics Supervisor Perth Inorganics, Wangara, WA Chris Lemaitre Laboratory Manager (Perth) Perth Inorganics, Wangara, WA Daniel Fisher Inorganics Analyst Perth ASS, Wangara, WA

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Thomas Donovan Senior Organic Chemist Perth Organics, Wangara, WA Page : 2 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD

Project : 4602.5 Lower Vasse River Dredge Monitoring

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

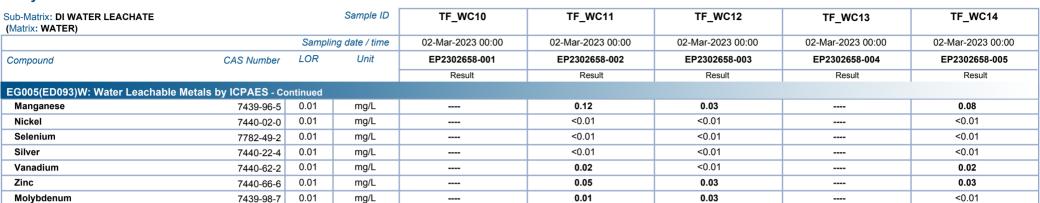
LOR = Limit of reporting

LOT - Littlit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- For the 'Summary of Thresholds Reached or Exceeded' to accurately function, all samples must be analysed and included in the 'Analytical Results' section of the following report. Please verify that all required sample IDs are listed and analysed.
- This Automated Guideline Comparison report assesses potential chemical 'contaminants' versus guideline criteria. Other parameters may impact classification and 95% upper control limits may also be applied refer to EPA Regulations.
- This guideline comparison report only provides evaluation data where chemical parameters specifically listed within the DEC Waste Classification and Waste Definitions 1996 (as amended December 2019) guideline are analysed by ALS using P-19/2 package.
- This guideline comparison report only provides evaluation of total concentration data against upper limit thresholds for Classes I to IV.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG048G (Hexavalent Chromium): Poor Hexavalent Chromium spike recoveries possibly due to sample matrix effects. Confirmed by re-extraction and re-analysis.
- EG048G (Hexavalent Chromium): LOR for sample EP2302658-001 raised due to possible sample matrix interference.
- EG005: Poor matrix spike recovery was obtained for As and V due to possible sample matrix interference and sample heterogeneity. Results have been confirmed by re-extraction and re-
- EK061G (Total Kjeldahl Nitrogen): Poor duplicate precision due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): ANC not required for sample #14 because pH KCl less than 6.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.
- EN60-DI: Where leachable PFAS analysis is requested, centrifugation rather than pressure filtration is used as the default approach for removal of particulates, in line with AS 4439.3.

Page : 3 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring



Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC10	TF_WC11	TF_WC12	TF_WC13	TF_WC14
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005
				Result	Result	Result	Result	Result
EG035W: Water Leachable Mercu	ry by FIMS							
Mercury	7439-97-6	0.00004	mg/L	<0.00004			<0.00004	
Mercury	7439-97-6	0.0001	mg/L		<0.0001	<0.0001		<0.0001
EG049G-W: Trivalent Chromium i	n Water Leachates							
Trivalent Chromium	16065-83-1	0.005	mg/L	0.015			0.008	
EG050G LL-W: Hexavalent Chrom	nium in Water Leachate	s by Disci	rete Analyser	- Low Level				
Hexavalent Chromium	18540-29-9		mg/L	<0.001			<0.001	
EG050G-W: Hexavalent Chromiun			- U					
Hexavalent Chromium	18540-29-9	0.01	mg/L		<0.01	<0.01		<0.01
EG094W: Water Leachable Metals			J					
Antimony	7440-36-0	1.0	μg/L	<1.0			<1.0	
Arsenic	7440-38-2	0.2	μg/L	4.3			2.8	
Cadmium	7440-43-9	0.10	μg/L	<0.10			<0.10	
Chromium	7440-47-3	5.0	μg/L	15.3			7.6	
Cobalt	7440-47-3	0.1	μg/L	1.9			1.7	
Copper	7440-48-4	2.0	μg/L	7.0			6.2	
Lead	7439-92-1	0.2	μg/L	14.0			11.5	
Manganese	7439-92-1	0.5	μg/L	117			68.4	
Molybdenum	7439-96-3	1.0	μg/L	4.3			8.4	
Nickel	7440-02-0	2.0	μg/L	3.6			2.2	
Selenium	7782-49-2	0.2	μg/L	0.4			0.4	
Silver	7440-22-4	0.2	μg/L	<0.2			<0.2	
Thallium	7440-28-0	0.05	μg/L	<0.05			<0.05	
Uranium	7440-61-1	0.05	μg/L	1.61			1.70	
Zinc	7440-61-1	5	μg/L	43			36	
		J	μg/L				00	
EG005(ED093)W: Water Leachabl Aluminium		0.10	ma/l		14.3	4.21		11.6
Arsenic	7429-90-5 7440-38-2	0.10	mg/L mg/L		0.02	0.03		0.02
Barium		0.01	mg/L		<0.1	<0.1		<0.1
Beryllium	7440-39-3	0.1	mg/L		<0.01	<0.01		<0.01
Boron	7440-41-7	0.01	mg/L		<0.1	0.2		<0.01
Cadmium	7440-42-8	0.005	mg/L		<0.005	<0.005		<0.005
Cobalt	7440-43-9	0.003			<0.003	<0.005		<0.003
	7440-48-4	0.01	mg/L		<0.01	<0.01		<0.01
Copper	7440-50-8		mg/L					<0.01
Lead	7439-92-1	0.01	mg/L		0.02	0.01		<0.01

Page : 4 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD

Project : 4602.5 Lower Vasse River Dredge Monitoring

Page : 5 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	
		Sampli	ng date / time	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	
				Result	Result	Result	Result	
EG035W: Water Leachable Mercury by	y FIMS							
Mercury	7439-97-6	0.00004	mg/L		<0.00004			
Mercury	7439-97-6	0.0001	mg/L	<0.0001		<0.0001	<0.0001	
EG049G-W: Trivalent Chromium in Wa	ater Leachates							
Trivalent Chromium	16065-83-1	0.005	mg/L		0.017			
EG050G LL-W: Hexavalent Chromium	in Water Leachate	s by Discr	ete Analyser	- Low Level				
Hexavalent Chromium	18540-29-9		mg/L		<0.001			
EG050G-W: Hexavalent Chromium - W								
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01		<0.01	<0.01	
EG094W: Water Leachable Metals by			J					
Antimony	7440-36-0	1.0	μg/L		<1.0			
Arsenic	7440-38-2	0.2	μg/L		5.1			
Cadmium	7440-43-9	0.10	μg/L		<0.10			
Chromium	7440-47-3	5.0	μg/L		16.8			
Cobalt	7440-48-4	0.1	μg/L		1.9			
Copper	7440-50-8	2.0	μg/L		6.0			
Lead	7439-92-1	0.2	μg/L		12.4			
Manganese	7439-96-5	0.5	μg/L		162			
Molybdenum	7439-98-7	1.0	μg/L		3.3			
Nickel	7440-02-0	2.0	μg/L		4.7			
Selenium	7782-49-2	0.2	μg/L		0.3			
Silver	7440-22-4	0.2	μg/L		<0.2			
Thallium	7440-28-0	0.05	μg/L		<0.05			
Uranium	7440-61-1	0.05	μg/L		1.28			
Zinc	7440-66-6	5	μg/L		39			
EG005(ED093)W: Water Leachable Me								
Aluminium	7429-90-5	0.10	mg/L	6.09		9.29	2.18	
Arsenic	7440-38-2	0.01	mg/L	0.01		0.02	0.01	
Barium	7440-39-3	0.1	mg/L	<0.1		<0.1	<0.1	
Beryllium	7440-41-7	0.01	mg/L	<0.01		<0.01	<0.01	
Boron	7440-42-8	0.1	mg/L	<0.1		<0.1	0.2	
Cadmium	7440-43-9	0.005	mg/L	<0.005		<0.005	<0.005	
Cobalt	7440-48-4	0.01	mg/L	<0.01		<0.01	<0.01	
Copper	7440-50-8	0.01	mg/L	<0.01		<0.01	<0.01	
Lead	7439-92-1	0.01	mg/L	<0.01		<0.01	<0.01	

Page : 6 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD

Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	
		Sampli	ng date / time	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	
				Result	Result	Result	Result	
EG005(ED093)W: Water Leachable	Metals by ICPAES - Co	ntinued						
Manganese	7439-96-5	0.01	mg/L	0.06		0.06	0.02	
Nickel	7440-02-0	0.01	mg/L	<0.01		<0.01	<0.01	
Selenium	7782-49-2	0.01	mg/L	0.10		0.03	0.02	
Silver	7440-22-4	0.01	mg/L	<0.01		<0.01	<0.01	
Vanadium	7440-62-2	0.01	mg/L	0.01		0.02	<0.01	
Zinc	7440-66-6	0.01	mg/L	0.02		0.03	0.01	
Molybdenum	7439-98-7	0.01	mg/L	<0.01		0.01	0.02	

Page : 7 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

ub-Matrix: SOIL Matrix: SOIL)			Sample ID	TF_WC10	TF_WC11	TF_WC12	TF_WC13	TF_WC14
		Sampli	ng date / time	02-Mar-2023 00:00				
ompound	CAS Number	LOR	Unit	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005
				Result	Result	Result	Result	Result
A002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit		8.0	8.0		8.1
A055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	11.4	11.8	32.6	17.4	24.4
D040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg	2100			3040	
G005(ED093)T: Total Metals by ICI			3 3					
Aluminium	7429-90-5	50	mg/kg	5070	4150	6160	4470	5560
Antimony	7440-36-0	5	mg/kg	<5			<5	
Arsenic	7440-38-2	5	mg/kg	<5	<5	37	7	29
Barium	7440-39-3	10	mg/kg	<10	10	20	10	20
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1	<1	<1
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Chromium	7440-47-3	2	mg/kg	10			10	
Cobalt	7440-48-4	2	mg/kg	<2	<2	3	<2	3
Copper	7440-50-8	5	mg/kg	<u>-</u> <5	<5	21	<5	18
Lead	7439-92-1	5	mg/kg	<5			7	
Manganese	7439-96-5	5	mg/kg	42	48	76	49	64
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	<2	<2	3	<2	3
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	<2
Tin	7440-31-5	5	mg/kg	<5			<5	
Vanadium	7440-62-2	5	mg/kg	11	9	13	11	11
Zinc	7440-66-6	5	mg/kg	6	9	67	14	66
G020T: Total Metals by ICP-MS								
Selenium	7782-49-2	1	mg/kg	<1			<1	
Thallium	7440-28-0	0.1	mg/kg	<0.1			<0.1	
Cadmium	7440-43-9	0.1	mg/kg	<0.1			<0.1	
Cadmium	7440-43-9	0.1	mg/kg		<0.1	0.2		0.2
Uranium	7440-61-1	0.1	mg/kg	0.5			0.8	
Lead	7439-92-1	0.1	mg/kg		8.4	28.4		26.8
Selenium	7782-49-2	1	mg/kg		<1	5		4
G035T: Total Recoverable Mercur								1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Page : 8 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC10	TF_WC11	TF_WC12	TF_WC13	TF_WC14
		Sampli	ing date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005
•				Result	Result	Result	Result	Result
EG048: Hexavalent Chromium (Alkaline	Digest) - Continue	d						
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<2.5	<0.5	<0.5	<0.5	<0.5
EG049: Trivalent Chromium								
Trivalent Chromium	16065-83-1	2	mg/kg	10			10	
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg	70			100	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Anal	vser						
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	15.4	14.6	13.3	20.0	15.3
EK061G: Total Kjeldahl Nitrogen By Disc	crete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	620	720	1890	1510	900
EK062: Total Nitrogen as N (TKN + NOx)			0 0					
^ Total Nitrogen as N		20	mg/kg	640	730	1900	1530	920
EK067G: Total Phosphorus as P by Disc			99			1000		V=0
Total Phosphorus as P		2	mg/kg	167	166	344	263	197
•			0 0	-	100	0 77	200	101
EN60-DI: Bottle Leaching Procedure - In Final pH	organics/Non-vol	0.1	pH Unit	/essei)	7.8	7.6		8.1
•			•		7.0	7.0		0.1
EN60-DI: Bottle Leaching Procedure - In Final pH		lastic Ve	pH Unit	8,2			8.0	
•		0.1	рн опп	0.2			0.0	
EP003: Total Organic Carbon (TOC) in S		0.00	%	4.70	101	0.40	0.05	101
Total Organic Carbon		0.02	%	1.78	1.94	2.13	3.85	1.91
EP070: Total Petroleum Hydrocarbons -		100		100			400	I
Aliphatic C16-C35		100	mg/kg	<100			<100	
Aliphatic > C35		100	mg/kg	<100			<100	
Aromatic C16-C35		90	mg/kg	<90			<90	
Aromatic > C35		100	mg/kg	<100			<100	
EP071 SG: Total Recoverable Hydrocark	ons - NEPM 2013							1
>C10 - C16 Fraction		50	mg/kg	<50			<50	
>C16 - C34 Fraction		100	mg/kg	<100			<100	
>C34 - C40 Fraction		100	mg/kg	<100			<100	
> C10 - C40 Fraction (sum)		50	mg/kg	<50			<50	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50			<50	
(F2)								
EP071 SG-S: Total Petroleum Hydrocart C10 - C14 Fraction		a gel cle 50		<50			<50	I
G10 - G14 Fraction		50	mg/kg	\00			\\SU	

Page : 9 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC10	TF_WC11	TF_WC12	TF_WC13	TF_WC14
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005
·				Result	Result	Result	Result	Result
EP071 SG-S: Total Petroleum Hydro	ocarbons in Soil - Silic	a gel clea	anup - Continue	ed				
C15 - C28 Fraction		100	mg/kg	<100			<100	
C29 - C36 Fraction		100	mg/kg	<100			<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50			<50	
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5			<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5			<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5			<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5			<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5			<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5			<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5			<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5			<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5			<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5			<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5			<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5			<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5			<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5			<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5			<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			<0.5	
^ Sum of polycyclic aromatic hydrocart	bons	0.5	mg/kg	<0.5			<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5			<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6			0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2			1.2	
EP080/071: Total Petroleum Hydrod	carbons							
C6 - C9 Fraction		10	mg/kg	<10			<10	
C10 - C14 Fraction		50	mg/kg	<50			<50	
C15 - C28 Fraction		100	mg/kg	<100			<100	
C29 - C36 Fraction		100	mg/kg	<100			<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50			<50	
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10			<10	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10			<10	

Page : 10 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC10	TF_WC11	TF_WC12	TF_WC13	TF_WC14
·		Sampli	ing date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-001	EP2302658-002	EP2302658-003	EP2302658-004	EP2302658-005
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns - Continued					
>C10 - C16 Fraction		50	mg/kg	<50			<50	
>C16 - C34 Fraction		100	mg/kg	<100			130	
>C34 - C40 Fraction		100	mg/kg	<100			<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50			130	
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50			<50	
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2			<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5			<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5			<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5			<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5			<0.5	
^ Sum of BTEX		0.2	mg/kg	<0.2			<0.2	
^ Total Xylenes		0.5	mg/kg	<0.5			<0.5	
Naphthalene	91-20-3	1	mg/kg	<1			<1	
EP070: Total Petroleum Hydrocarbons	s - Speciation							
2-Bromonaphthalene	580-13-2	1	%	77.0			84.2	
2-Fluorobiphenyl	321-60-8	1	%	88.7			88.7	
EP075(SIM)S: Phenolic Compound Su	irrogates							
Phenol-d6	13127-88-3	0.5	%	105			105	
2-Chlorophenol-D4	93951-73-6	0.5	%	107			106	
2.4.6-Tribromophenol	118-79-6	0.5	%	69.9			80.9	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	111			110	
Anthracene-d10	1719-06-8	0.5	%	96.3			99.2	
4-Terphenyl-d14	1718-51-0	0.5	%	96.4			104	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	108			89.4	
Toluene-D8	2037-26-5	0.2	%	83.7			73.9	
4-Bromofluorobenzene	460-00-4	0.2	%	100			92.7	

Page : 11 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Compound							TF_WC18	TF_ASS10
Compound		Sampli	ng date / time	02-Mar-2023 00:00				
A Company of the Comp	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	EP2302658-010
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	8.2		8.2	7.6	
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit					8.8
Titratable Actual Acidity (23F)		2	mole H+/t					<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S					<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S					0.272
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+/t					170
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3					6.89
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t					1380
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S					2.21
EA033-D: Retained Acidity								
Net Acid Soluble Sulfur (20Je)		0.02	% S					<0.02
acidity - Net Acid Soluble Sulfur (a-20J)		10	mole H+ / t					<10
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S					<0.02
KCI Extractable Sulfur (23Ce)		0.02	% S					<0.02
HCI Extractable Sulfur (20Be)		0.02	% S					<0.02
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-					1.5
Net Acidity (sulfur units)		0.02	% S					<0.02
Net Acidity (acidity units)		10	mole H+/t					<10
Liming Rate		1	kg CaCO3/t					<1
Net Acidity excluding ANC (sulfur units)		0.02	% S					0.27
Net Acidity excluding ANC (acidity units)		10	mole H+/t					170
Liming Rate excluding ANC		1	kg CaCO3/t					13
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit					7.5
ø pH (Fox)		0.1	pH Unit					5.9
Ø Reaction Rate		1	-					Extreme

Page : 12 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	TF_ASS10
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	EP2302658-010
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	2 105-110°C) - Continued							
Moisture Content		1.0	%	16.4	14.0	20.8	29.2	
ED040: Sulfur as SO4 2-								
Sulfate as SO4 2-	14808-79-8	100	mg/kg		1420			
G005(ED093)T: Total Metals by I	CP-AES							
Aluminium	7429-90-5	50	mg/kg	4080	3960	4460	4800	
Antimony	7440-36-0	5	mg/kg		<5			
Arsenic	7440-38-2	5	mg/kg	8	7	9	9	
Barium	7440-39-3	10	mg/kg	10	10	10	10	
Beryllium	7440-41-7	1	mg/kg	<1	<1	<1	<1	
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	
Chromium	7440-47-3	2	mg/kg		8			
Cobalt	7440-48-4	2	mg/kg	<2	<2	<2	<2	
Copper	7440-50-8	5	mg/kg	<5	<5	6	6	
Lead	7439-92-1	5	mg/kg		7			
Manganese	7439-96-5	5	mg/kg	54	50	60	59	
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	
Nickel	7440-02-0	2	mg/kg	<2	<2	<2	<2	
Silver	7440-22-4	2	mg/kg	<2	<2	<2	<2	
Tin	7440-31-5	5	mg/kg		<5			
Vanadium	7440-62-2	5	mg/kg	10	10	11	13	
Zinc	7440-66-6	5	mg/kg	15	15	19	16	
G020T: Total Metals by ICP-MS								
Selenium	7782-49-2	1	mg/kg		<1			
Thallium	7440-28-0	0.1	mg/kg		<0.1			
Cadmium	7440-43-9	0.1	mg/kg		<0.1			
Cadmium	7440-43-9	0.1	mg/kg	<0.1		<0.1	<0.1	
Uranium	7440-61-1	0.1	mg/kg		0.6			
Lead	7439-92-1	0.1	mg/kg	8.3		10.4	9.5	
Selenium	7782-49-2	1	mg/kg	<1		1	1	
G035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
G048: Hexavalent Chromium (Al						<u> </u>		
Hexavalent Chromium	18540-29-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
EG049: Trivalent Chromium						_	-	

Page : 13 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	TF_ASS10
		Sampli	ing date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	EP2302658-010
·				Result	Result	Result	Result	Result
EG049: Trivalent Chromium - Continued								
Trivalent Chromium	16065-83-1	2	mg/kg		8			
EK040T: Fluoride Total								
Fluoride	16984-48-8	40	mg/kg		80			
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Anal	vser						
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	13.4	12.8	22.4	20.5	
EK061G: Total Kjeldahl Nitrogen By Dis	screte Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	620	680	500	3600	
EK062: Total Nitrogen as N (TKN + NOx	0					<u> </u>		
^ Total Nitrogen as N		20	mg/kg	630	690	520	3620	
EK067G: Total Phosphorus as P by Dis	crete Analyser							
Total Phosphorus as P		2	mg/kg	165	174	149	499	
EN60-DI: Bottle Leaching Procedure - I	norganics/Non-Vol							
Final pH		0.1	pH Unit	8.2		8.0	7.4	
EN60-DI: Bottle Leaching Procedure - I								
Final pH	norganics/PPAS (P	0.1	pH Unit		8.3			
·		0.1	pri Giii		0.0			
EP003: Total Organic Carbon (TOC) in S Total Organic Carbon		0.02	%	1.84	1.98	2.75	5,22	
		0.02	70	1.04	1.30	2.70	J.22	
EP070: Total Petroleum Hydrocarbons Aliphatic C16-C35		100	mg/kg		<100		I	I
Aliphatic > C35		100	mg/kg		<100			
Aromatic C16-C35		90	mg/kg		<90			
Aromatic > C35		100	mg/kg		<100			
					-100			
EP071 SG: Total Recoverable Hydrocar >C10 - C16 Fraction	2013 - Dons - NEPM 2013	Fraction 50	mg/kg	cleanup 	<50			
>C16 - C34 Fraction		100	mg/kg		<100			
>C34 - C40 Fraction		100	mg/kg		<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg		<50			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg		<50			
(F2)								
EP071 SG-S: Total Petroleum Hydrocar	bons in Soil - Silic	a nel cle	anun					
C10 - C14 Fraction		50	mg/kg		<50			
C15 - C28 Fraction		100	mg/kg		<100			
C29 - C36 Fraction		100	mg/kg		<100			

Page : 14 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	TF_ASS10
		Samplii	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	EP2302658-010
				Result	Result	Result	Result	Result
EP071 SG-S: Total Petroleum Hydro	carbons in Soil - Silic	ca gel clea	anup - Continu	ed				
^ C10 - C36 Fraction (sum)		50	mg/kg		<50			
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5			
Acenaphthene	83-32-9	0.5	mg/kg		<0.5			
Fluorene	86-73-7	0.5	mg/kg		<0.5			
Phenanthrene	85-01-8	0.5	mg/kg		<0.5			
Anthracene	120-12-7	0.5	mg/kg		<0.5			
Fluoranthene	206-44-0	0.5	mg/kg		<0.5			
Pyrene	129-00-0	0.5	mg/kg		<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5			
Chrysene	218-01-9	0.5	mg/kg		<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5			
^ Sum of polycyclic aromatic hydrocarb	ons	0.5	mg/kg		<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5			
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6			
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2			
EP080/071: Total Petroleum Hydroc	arbons							
C6 - C9 Fraction		10	mg/kg		<10			
C10 - C14 Fraction		50	mg/kg		<50			
C15 - C28 Fraction		100	mg/kg		<100			
C29 - C36 Fraction		100	mg/kg		<100			
^ C10 - C36 Fraction (sum)		50	mg/kg		<50			
EP080/071: Total Recoverable Hydro	ocarbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg		<10			
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg		<10			
>C10 - C16 Fraction		50	mg/kg		<50			
>C16 - C34 Fraction		100	mg/kg		<100			

Page : 15 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC15	TF_WC16	TF_WC17	TF_WC18	TF_ASS10
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-006	EP2302658-007	EP2302658-008	EP2302658-009	EP2302658-010
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns - Continued					
>C34 - C40 Fraction		100	mg/kg		<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg		<50			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg		<50			
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2			
Toluene	108-88-3	0.5	mg/kg		<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5			
^ Sum of BTEX		0.2	mg/kg		<0.2			
^ Total Xylenes		0.5	mg/kg		<0.5			
Naphthalene	91-20-3	1	mg/kg		<1			
EP070: Total Petroleum Hydrocarbons	s - Speciation							
2-Bromonaphthalene	580-13-2	1	%		80.7			
2-Fluorobiphenyl	321-60-8	1	%		86.7			
EP075(SIM)S: Phenolic Compound Su	ırrogates							
Phenol-d6	13127-88-3	0.5	%		103			
2-Chlorophenol-D4	93951-73-6	0.5	%		105			
2.4.6-Tribromophenol	118-79-6	0.5	%		70.8			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		107			
Anthracene-d10	1719-06-8	0.5	%		95.8			
4-Terphenyl-d14	1718-51-0	0.5	%		100			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%		114			
Toluene-D8	2037-26-5	0.2	%		91.6			
4-Bromofluorobenzene	460-00-4	0.2	%		109			

Page : 16 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS11	TF_ASS12	TF_ASS13	TF_ASS14	TF_ASS15
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-011	EP2302658-012	EP2302658-013	EP2302658-014	EP2302658-015
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		8.9		6.4	
Titratable Actual Acidity (23F)		2	mole H+/t		<2		2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02		<0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.272		1.25	
acidity - Chromium Reducible Sulfur		10	mole H+/t		170		778	
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3		9.17			
acidity - Acid Neutralising Capacity		10	mole H+ / t		1830			
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S		2.94			
(s-19A2)								
EA033-D: Retained Acidity								
Net Acid Soluble Sulfur (20Je)		0.02	% S		<0.02			
acidity - Net Acid Soluble Sulfur (a-20J)		10	mole H+/t		<10			
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S		<0.02			
KCI Extractable Sulfur (23Ce)		0.02	% S		<0.02			
HCI Extractable Sulfur (20Be)		0.02	% S		<0.02			
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5		1.5	
Net Acidity (sulfur units)		0.02	% S		<0.02		1.25	
Net Acidity (acidity units)		10	mole H+/t		<10		780	
Liming Rate		1	kg CaCO3/t		<1		59	
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.27		1.25	
Net Acidity excluding ANC (acidity units)		10	mole H+/t		170		780	
Liming Rate excluding ANC		1	kg CaCO3/t		13		59	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.5	7.4	7.6	7.6	7.3
ø pH (Fox)		0.1	pH Unit	6.4	6.5	6.0	3.2	5.8
ø Reaction Rate		1	-	Extreme	Extreme	Extreme	Extreme	Strong

Page : 17 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS16	TF_ASS17	TF_ASS18	TF_ASS19	TF_ASS20
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-016	EP2302658-017	EP2302658-018	EP2302658-019	EP2302658-020
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	8.9		8.3		9.1
Titratable Actual Acidity (23F)		2	mole H+ / t	<2		<2		<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02		<0.02		<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.120		0.497		0.141
acidity - Chromium Reducible Sulfur		10	mole H+/t	75		310		88
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	5.69		3.46		11.0
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1140		692		2200
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	1.82		1.11		3.54
(s-19A2)								
EA033-D: Retained Acidity								
Net Acid Soluble Sulfur (20Je)		0.02	% S	<0.02		<0.02		<0.02
acidity - Net Acid Soluble Sulfur (a-20J)		10	mole H+ / t	<10		<10		<10
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S	<0.02		<0.02		<0.02
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02		<0.02		<0.02
HCI Extractable Sulfur (20Be)		0.02	% S	<0.02		<0.02		<0.02
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5		1.5		1.5
Net Acidity (sulfur units)		0.02	% S	<0.02		<0.02		<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10		<10		<10
Liming Rate		1	kg CaCO3/t	<1		<1		<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.12		0.50		0.14
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	75		310		88
Liming Rate excluding ANC		1	kg CaCO3/t	6		23		7
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.5	7.4	7.3	7.5	7.6
Ø pH (Fox)		0.1	pH Unit	5.8	6.4	6.1	5.9	6.0
Ø Reaction Rate		1	-	Strong	Extreme	Extreme	Extreme	Strong

Page : 18 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS21	TF_ASS22	TF_ASS23	TF_ASS24	TF_ASS25
		Sampli	ng date / time	02-Mar-2023 00:00				
Compound	CAS Number	LOR	Unit	EP2302658-021	EP2302658-022	EP2302658-023	EP2302658-024	EP2302658-025
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		8.6		9.1	
Titratable Actual Acidity (23F)		2	mole H+/t		<2		<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02		<0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.442		0.178	
acidity - Chromium Reducible Sulfur		10	mole H+/t		276		111	
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3		5.10		8.66	
acidity - Acid Neutralising Capacity		10	mole H+ / t		1020		1730	
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S		1.63		2.77	
(s-19A2)								
EA033-D: Retained Acidity								
Net Acid Soluble Sulfur (20Je)		0.02	% S		<0.02		<0.02	
acidity - Net Acid Soluble Sulfur (a-20J)		10	mole H+/t		<10		<10	
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S		<0.02		<0.02	
KCI Extractable Sulfur (23Ce)		0.02	% S		<0.02		<0.02	
HCI Extractable Sulfur (20Be)		0.02	% S		<0.02		<0.02	
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5		1.5	
Net Acidity (sulfur units)		0.02	% S		<0.02		<0.02	
Net Acidity (acidity units)		10	mole H+/t		<10		<10	
Liming Rate		1	kg CaCO3/t		<1		<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.44		0.18	
Net Acidity excluding ANC (acidity units)		10	mole H+/t		276		111	
Liming Rate excluding ANC		1	kg CaCO3/t		21		8	
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	7.5	7.6	7.5	7.6	7.3
Ø pH (Fox)		0.1	pH Unit	5.8	5.1	5.8	6.4	5.6
ø Reaction Rate		1	-	Strong	Extreme	Extreme	Extreme	Strong

Page : 19 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_ASS26	TF_ASS27	TF_ASS28	
		Sampli	ng date / time	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	
Compound	CAS Number	LOR	Unit	EP2302658-026	EP2302658-027	EP2302658-028	
				Result	Result	Result	
EA033-A: Actual Acidity							
pH KCI (23A)		0.1	pH Unit	8.6		8.8	
Titratable Actual Acidity (23F)		2	mole H+ / t	<2		<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02		<0.02	
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)		0.005	% S	0.152		0.171	
acidity - Chromium Reducible Sulfur		10	mole H+/t	95		107	
(a-22B)							
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	6.64		5.21	
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1330		1040	
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	2.13		1.67	
(s-19A2)							
EA033-D: Retained Acidity Net Acid Soluble Sulfur (20Je)		0.02	% S	<0.02		<0.02	
acidity - Net Acid Soluble Sulfur (a-20J)		10	mole H+ / t	<10		<10	
sulfidic - Net Acid Soluble Sulfur (s-20J)		0.02	% pyrite S	<0.02		<0.02	
KCI Extractable Sulfur (23Ce)		0.02	% S	<0.02		<0.02	
HCI Extractable Sulfur (20Be)		0.02	% S	<0.02		<0.02	
, ,		0.02	7,0 0	0.02		0.02	
EA033-E: Acid Base Accounting ANC Fineness Factor		0.5	_	1.5		1.5	
Net Acidity (sulfur units)		0.02	% S	<0.02		<0.02	
Net Acidity (suitur units)		10	mole H+ / t	<10		<10	
Liming Rate		1	kg CaCO3/t	<1		<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.15		0.17	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	95		107	
Liming Rate excluding ANC		1	kg CaCO3/t	7		8	
EA037: Ass Field Screening Analysis							1
Ø pH (F)		0.1	pH Unit	7.7	7.5	7.5	
Ø pH (Fox)		0.1	pH Unit	5.9	6.0	5.8	
Ø Reaction Rate		1	-	Strong	Strong	Strong	

Page : 20 of 20 Work Order : EP2302658

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)								
Compound	CAS Number	Low	High						
EP070: Total Petroleum Hydrocarbons - Speciation									
2-Bromonaphthalene	580-13-2	70	130						
2-Fluorobiphenyl	321-60-8	70	130						
EP075(SIM)S: Phenolic Compound S	EP075(SIM)S: Phenolic Compound Surrogates								
Phenol-d6	13127-88-3	57	119						
2-Chlorophenol-D4	93951-73-6	52	130						
2.4.6-Tribromophenol	118-79-6	40	132						
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	53	139						
Anthracene-d10	1719-06-8	68	124						
4-Terphenyl-d14	1718-51-0	66	132						
EP080S: TPH(V)/BTEX Surrogates									
1.2-Dichloroethane-D4	17060-07-0	63	132						
Toluene-D8	2037-26-5	66	125						
4-Bromofluorobenzene	460-00-4	60	124						

Inter-Laboratory Testing

Analysis conducted by ALS Brisbane, NATA accreditation no. 825, site no. 818 (Chemistry) 18958 (Biology).

(SOIL) EP003: Total Organic Carbon (TOC) in Soil

Analysis conducted by ALS Melbourne, NATA accreditation no. 825, site no. 13778 (Chemistry).

(SOIL) EK040T: Fluoride Total

CERTIFICATE OF ANALYSIS

Work Order : EP2303864

Client : 360 ENVIRONMENTAL PTY LTD

Contact : ALYSIA WOODWARD

Address : 10 Bermondsey St

West Leederville 6007

Telephone : +61 08 93210420

Project : 4602.5 Lower Vasse River Dredge Monitoring

Order number : 4602.5

C-O-C number

Sampler : PAUL ROBERTSON

Site

Quote number : EP/205/23_V2

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 5

> Laboratory : Environmental Division Perth

Contact : Genevieve De Souza

Address : 26 Rigali Way Wangara WA Australia 6065

Telephone : +61-8-9406 1301

Date Samples Received : 03-Mar-2023 16:30

Date Analysis Commenced : 28-Mar-2023

Issue Date : 11-Apr-2023 10:28

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW

Page : 2 of 5 Work Order : EP2303864

Client : 360 ENVIRONMENTAL PTY LTD

Project : 4602.5 Lower Vasse River Dredge Monitoring

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP131A-ST conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- This workorder is a rebatch of EP2302658.

Page : 3 of 5
Work Order : EP2303864

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: DI WATER LEACHATE (Matrix: WATER)			Sample ID	TF_WC10	TF_WC13	TF_WC17	
(Sampli	ng date / time	02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EP2303864-001	EP2303864-002	EP2303864-003	
				Result	Result	Result	
EK040P: Fluoride by PC Titrator		4		1 1 1			
Fluoride	16984-48-8	0.1	mg/L	0.2	0.3	0.2	
EK055G: Ammonia as N by Discrete	e Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.07	0.48	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	llyser					
Nitrite + Nitrate as N		0.01	mg/L	0.78	1.09	0.48	
EK061G: Total Kjeldahl Nitrogen By	/ Discrete Analy <u>ser</u>	100					
Total Kjeldahl Nitrogen as N		0.1	mg/L	2.5	1.9	2.2	
EK062G: Total Nitrogen as N (TKN	+ NOx) by Discrete Ar	nalyser					
^ Total Nitrogen as N		0.1	mg/L	3.3	3.0	2.7	
EK067G: Total Phosphorus as P by	Discrete Analyser	1					
Total Phosphorus as P		0.01	mg/L	0.43	0.26	0.32	
EP131A: Organochlorine Pesticides	S	12					
Aldrin	309-00-2	0.001	μg/L	<0.001	<0.001	<0.001	
4.4`-DDD	72-54-8	0.002	μg/L	<0.002	<0.002	<0.002	
4.4`-DDE	72-55-9	0.002	μg/L	<0.002	<0.002	<0.002	
4.4`-DDT	50-29-3	0.002	μg/L	<0.002	<0.002	<0.002	
Dieldrin	60-57-1	0.002	μg/L	<0.002	<0.002	<0.002	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.002	μg/L	<0.002	<0.002	<0.002	
	0-2						
EG005(ED093)W: Water Leachable	Metals by ICPAES	100					
Aluminium	7429-90-5	0.10	mg/L	13.0	4.39	16.4	
Boron	7440-42-8	0.1	mg/L	<0.1	0.1	<0.1	
EP131S: OC Pesticide Surrogate		14					
Dibromo-DDE	21655-73-2	0.002	%	81.7	108	114	

Page : 4 of 5
Work Order : EP2303864

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	TF_WC10	TF_WC13	TF_WC17			
Sampling date / time				02-Mar-2023 00:00	02-Mar-2023 00:00	02-Mar-2023 00:00			
Compound	CAS Number	LOR	Unit	EP2303864-001	EP2303864-002	EP2303864-003			
				Result	Result	Result			
EN60-DI: Bottle Leaching Procedure - Inorganics/Non-Volatile Organics (Glass Vessel)									
Final pH		0.1	pH Unit	8.2	7.9	8.2			

Page : 5 of 5 Work Order : EP2303864

Client : 360 ENVIRONMENTAL PTY LTD
Project : 4602.5 Lower Vasse River Dredge Monitoring

Surrogate Control Limits

Sub-Matrix: DI WATER LEACHATE	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP131S: OC Pesticide Surrogate				
Dibromo-DDE	21655-73-2	41	136	

Inter-Laboratory Testing

Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(WATER) EP131A: Organochlorine Pesticides (WATER) EP131S: OC Pesticide Surrogate